List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/960183/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Neuronal calcium mishandling and the pathogenesis of Alzheimer's disease. Trends in Neurosciences, 2008, 31, 454-463.	8.6	772
2	Presenilins Form ER Ca2+ Leak Channels, a Function Disrupted by Familial Alzheimer's Disease-Linked Mutations. Cell, 2006, 126, 981-993.	28.9	605
3	Huntingtin and Huntingtin-Associated Protein 1 Influence Neuronal Calcium Signaling Mediated by Inositol-(1,4,5) Triphosphate Receptor Type 1. Neuron, 2003, 39, 227-239.	8.1	442
4	Calcium signaling and neurodegenerative diseases. Trends in Molecular Medicine, 2009, 15, 89-100.	6.7	393
5	Disturbed Ca2+ signaling and apoptosis of medium spiny neurons in Huntington's disease. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 2602-2607.	7.1	336
6	The dysregulation of intracellular calcium in Alzheimer disease. Cell Calcium, 2010, 47, 183-189.	2.4	289
7	Association of Neuronal Calcium Channels with Modular Adaptor Proteins. Journal of Biological Chemistry, 1999, 274, 24453-24456.	3.4	275
8	Maintaining the Stability of Neural Function: A Homeostatic Hypothesis. Annual Review of Physiology, 2001, 63, 847-869.	13.1	268
9	Reelin Modulates NMDA Receptor Activity in Cortical Neurons. Journal of Neuroscience, 2005, 25, 8209-8216.	3.6	254
10	Deranged Calcium Signaling and Neurodegeneration in Spinocerebellar Ataxia Type 2. Journal of Neuroscience, 2009, 29, 9148-9162.	3.6	252
11	Calcium signaling and molecular mechanisms underlying neurodegenerative diseases. Cell Calcium, 2018, 70, 87-94.	2.4	248
12	Deranged neuronal calcium signaling and Huntington disease. Biochemical and Biophysical Research Communications, 2004, 322, 1310-1317.	2.1	236
13	Reduced Synaptic STIM2 Expression and Impaired Store-Operated Calcium Entry Cause Destabilization of Mature Spines in Mutant Presenilin Mice. Neuron, 2014, 82, 79-93.	8.1	229
14	Allele-specific silencing of mutant huntingtin and ataxin-3 genes by targeting expanded CAG repeats in mRNAs. Nature Biotechnology, 2009, 27, 478-484.	17.5	218
15	Secondary Structure of Huntingtin Amino-Terminal Region. Structure, 2009, 17, 1205-1212.	3.3	216
16	The inositol 1,4,5-trisphosphate receptors. Cell Calcium, 2005, 38, 261-272.	2.4	207
17	Familial Alzheimer disease–linked mutations specifically disrupt Ca2+ leak function of presenilin 1. Journal of Clinical Investigation, 2007, 117, 1230-1239.	8.2	206
18	Deranged Calcium Signaling and Neurodegeneration in Spinocerebellar Ataxia Type 3. Journal of Neuroscience, 2008, 28, 12713-12724.	3.6	198

#	Article	IF	CITATIONS
19	Dopaminergic Signaling and Striatal Neurodegeneration in Huntington's Disease. Journal of Neuroscience, 2007, 27, 7899-7910.	3.6	181
20	Synaptic Targeting of N-Type Calcium Channels in Hippocampal Neurons. Journal of Neuroscience, 2002, 22, 6939-6952.	3.6	180
21	Dysregulation of neuronal calcium homeostasis in Alzheimer's disease – A therapeutic opportunity?. Biochemical and Biophysical Research Communications, 2017, 483, 998-1004.	2.1	172
22	ATP modulates the function of inositol 1,4,5-trisphosphate-gated channels at two sites. Neuron, 1993, 10, 1175-1184.	8.1	168
23	Role of Presenilins in Neuronal Calcium Homeostasis. Journal of Neuroscience, 2010, 30, 8566-8580.	3.6	158
24	Neuronal Store-Operated Calcium Entry and Mushroom Spine Loss in Amyloid Precursor Protein Knock-In Mouse Model of Alzheimer's Disease. Journal of Neuroscience, 2015, 35, 13275-13286.	3.6	158
25	Modulation of Type 1 Inositol (1,4,5)-Trisphosphate Receptor Function by Protein Kinase A and Protein Phosphatase 1α. Journal of Neuroscience, 2003, 23, 403-415.	3.6	146
26	Association of CaV1.3 L-Type Calcium Channels with Shank. Journal of Neuroscience, 2005, 25, 1037-1049.	3.6	135
27	Neuronal Store-Operated Calcium Entry Pathway asÂaÂNovel Therapeutic Target forÂHuntington'sÂDisease Treatment. Chemistry and Biology, 2011, 18, 777-793.	6.0	132
28	Neuronal Calcium Signaling, Mitochondrial Dysfunction, and Alzheimer's Disease. Journal of Alzheimer's Disease, 2010, 20, S487-S498.	2.6	129
29	Light-sheet microscopy of cleared tissues with isotropic, subcellular resolution. Nature Methods, 2019, 16, 1109-1113.	19.0	128
30	Enhanced Store-Operated Calcium Entry Leads to Striatal Synaptic Loss in a Huntington's Disease Mouse Model. Journal of Neuroscience, 2016, 36, 125-141.	3.6	127
31	Selective Positive Modulator of Calcium-Activated Potassium Channels Exerts Beneficial Effects in a Mouse Model of Spinocerebellar Ataxia Type 2. Chemistry and Biology, 2012, 19, 1340-1353.	6.0	126
32	Neuronal Sigma-1 Receptors: Signaling Functions and Protective Roles in Neurodegenerative Diseases. Frontiers in Neuroscience, 2019, 13, 862.	2.8	121
33	Deranged Calcium Signaling in Purkinje Cells and Pathogenesis in Spinocerebellar Ataxia 2 (SCA2) and Other Ataxias. Cerebellum, 2012, 11, 630-639.	2.5	120
34	Classification of PDZ domains. FEBS Letters, 2001, 509, 457-462.	2.8	113
35	Functional Characterization of Mammalian Inositol 1,4,5-Trisphosphate Receptor Isoforms. Biophysical Journal, 2005, 88, 1046-1055.	0.5	113
36	Full length mutant huntingtin is required for altered Ca2+ signaling and apoptosis of striatal neurons in the YAC mouse model of Huntington's disease. Neurobiology of Disease, 2008, 31, 80-88.	4.4	110

#	Article	IF	CITATIONS
37	Evaluation of Dimebon in cellular model of Huntington's disease. Molecular Neurodegeneration, 2008, 3, 15.	10.8	107
38	The sigma-1 receptor mediates the beneficial effects of pridopidine in a mouse model of Huntington disease. Neurobiology of Disease, 2017, 97, 46-59.	4.4	105
39	Store-Operated Calcium Channel Complex in Postsynaptic Spines: A New Therapeutic Target for Alzheimer's Disease Treatment. Journal of Neuroscience, 2016, 36, 11837-11850.	3.6	103
40	Chronic Suppression of Inositol 1,4,5-Triphosphate Receptor-Mediated Calcium Signaling in Cerebellar Purkinje Cells Alleviates Pathological Phenotype in Spinocerebellar Ataxia 2 Mice. Journal of Neuroscience, 2012, 32, 12786-12796.	3.6	101
41	Modulation of Mammalian Inositol 1,4,5-Trisphosphate Receptor Isoforms by Calcium: A Role of Calcium Sensor Region. Biophysical Journal, 2005, 88, 1056-1069.	0.5	99
42	PDZ domains: More than just a glue. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 787-789.	7.1	97
43	Dantrolene is neuroprotective in Huntington's disease transgenic mouse model. Molecular Neurodegeneration, 2011, 6, 81.	10.8	93
44	Role of endoplasmic reticulum Ca2+ signaling in the pathogenesis of Alzheimer disease. Frontiers in Molecular Neuroscience, 2013, 6, 29.	2.9	89
45	The rise and fall of Dimebon. Drug News and Perspectives, 2010, 23, 518.	1.5	89
46	Neuroprotective Effects of Inositol 1,4,5-Trisphosphate Receptor C-Terminal Fragment in a Huntington's Disease Mouse Model. Journal of Neuroscience, 2009, 29, 1257-1266.	3.6	87
47	Role of Inositol 1,4,5-Trishosphate Receptors in Pathogenesis of Huntington's Disease and Spinocerebellar Ataxias. Neurochemical Research, 2011, 36, 1186-1197.	3.3	82
48	Presenilins function in ER calcium leak and Alzheimer's disease pathogenesis. Cell Calcium, 2011, 50, 303-309.	2.4	81
49	Dendritic Spines Shape Analysis—Classification or Clusterization? Perspective. Frontiers in Synaptic Neuroscience, 2020, 12, 31.	2.5	81
50	The synaptic maintenance problem: membrane recycling, Ca2+ homeostasis and late onset degeneration. Molecular Neurodegeneration, 2013, 8, 23.	10.8	76
51	Ginsenosides protect striatal neurons in a cellular model of Huntington's disease. Journal of Neuroscience Research, 2009, 87, 1904-1912.	2.9	72
52	Functional Coupling of Phosphatidylinositol 4,5-Bisphosphate to Inositol 1,4,5-Trisphosphate Receptor. Journal of Biological Chemistry, 1998, 273, 14067-14070.	3.4	71
53	Dysregulation of Intracellular Calcium Signaling in Alzheimer's Disease. Antioxidants and Redox Signaling, 2018, 29, 1176-1188.	5.4	71
54	Familial Alzheimer's Disease Mutations in Presenilins: Effects on Endoplasmic Reticulum Calcium Homeostasis and Correlation with Clinical Phenotypes. Journal of Alzheimer's Disease, 2010, 21, 781-793.	2.6	70

#	Article	IF	CITATIONS
55	Tetrabenazine is neuroprotective in Huntington's disease mice. Molecular Neurodegeneration, 2010, 5, 18.	10.8	70
56	Dopamine Receptor-mediated Ca2+ Signaling in Striatal Medium Spiny Neurons. Journal of Biological Chemistry, 2004, 279, 42082-42094.	3.4	69
57	Balancing ER-Mitochondrial Ca2+ Fluxes in Health and Disease. Trends in Cell Biology, 2021, 31, 598-612.	7.9	69
58	Single-Channel Properties of Inositol (1,4,5)-Trisphosphate Receptor Heterologously Expressed in HEK-293 Cells. Journal of General Physiology, 1998, 111, 847-856.	1.9	68
59	Association of Type 1 Inositol 1,4,5-Trisphosphate Receptor with AKAP9 (Yotiao) and Protein Kinase A. Journal of Biological Chemistry, 2004, 279, 19375-19382.	3.4	67
60	Mutagenesis Mapping of the Presenilin 1 Calcium Leak Conductance Pore. Journal of Biological Chemistry, 2011, 286, 22339-22347.	3.4	63
61	STIM2 protects hippocampal mushroom spines from amyloid synaptotoxicity. Molecular Neurodegeneration, 2015, 10, 37.	10.8	62
62	The role of ryanodine receptor type 3 in a mouse model of Alzheimer disease. Channels, 2014, 8, 230-242.	2.8	61
63	Calcium Signaling, Excitability, and Synaptic Plasticity Defects in a Mouse Model of Alzheimer's Disease. Journal of Alzheimer's Disease, 2015, 45, 561-580.	2.6	61
64	AF710B, a Novel M1/σ1 Agonist with Therapeutic Efficacy in Animal Models of Alzheimer's Disease. Neurodegenerative Diseases, 2016, 16, 95-110.	1.4	59
65	Inositol 1,4,5â€ŧrisphosphate receptors and neurodegenerative disorders. FEBS Journal, 2018, 285, 3547-3565.	4.7	59
66	HAP1 facilitates effects of mutant huntingtin on inositol 1,4,5-trisphosphate-induced Ca2+ release in primary culture of striatal medium spiny neurons. European Journal of Neuroscience, 2004, 20, 1779-1787.	2.6	57
67	In vivo analysis of cerebellar Purkinje cell activity in SCA2 transgenic mouse model. Journal of Neurophysiology, 2016, 115, 2840-2851.	1.8	57
68	Corticostriatal circuit dysfunction in Huntington's disease: intersection of glutamate, dopamine and calcium. Future Neurology, 2010, 5, 735-756.	0.5	56
69	Pridopidine stabilizes mushroom spines in mouse models of Alzheimer's disease by acting on the sigma-1 receptor. Neurobiology of Disease, 2019, 124, 489-504.	4.4	56
70	Functional and Biochemical Analysis of the Type 1 Inositol (1,4,5)-Trisphosphate Receptor Calcium Sensor. Biophysical Journal, 2003, 85, 290-299.	0.5	55
71	Association of the type 1 inositol (1,4,5)-trisphosphate receptor with 4.1N protein in neurons. Molecular and Cellular Neurosciences, 2003, 22, 271-283.	2.2	55
72	Evaluation of clinically relevant glutamate pathway inhibitors in in vitro model of Huntington's disease. Neuroscience Letters, 2006, 407, 219-223.	2.1	54

#	Article	IF	CITATIONS
73	Inhibition of TRPC1-Dependent Store-Operated Calcium Entry Improves Synaptic Stability and Motor Performance in a Mouse Model of Huntington's Disease. Journal of Huntington's Disease, 2018, 7, 35-50.	1.9	49
74	Presynaptic store-operated Ca2+ entry drives excitatory spontaneous neurotransmission and augments endoplasmic reticulum stress. Neuron, 2021, 109, 1314-1332.e5.	8.1	49
75	Disturbed calcium signaling in spinocerebellar ataxias and Alzheimer's disease. Seminars in Cell and Developmental Biology, 2015, 40, 127-133.	5.0	47
76	Functional Characterization of the Type 1 Inositol 1,4,5-Trisphosphate Receptor Coupling Domain SII(±) Splice Variants and the Opisthotonos Mutant Form. Biophysical Journal, 2002, 82, 1995-2004.	0.5	45
77	Functional Properties of the Drosophila melanogaster Inositol 1,4,5-Trisphosphate Receptor Mutants. Biophysical Journal, 2004, 86, 3634-3646.	0.5	43
78	Simplified method to perform CLARITY imaging. Molecular Neurodegeneration, 2014, 9, 19.	10.8	42
79	Expanded Polyglutamine-Binding Peptoid as a Novel Therapeutic Agent for Treatment of Huntington's Disease. Chemistry and Biology, 2011, 18, 1113-1125.	6.0	40
80	Autism-Associated Chromatin Regulator Brg1/SmarcA4 Is Required for Synapse Development and Myocyte Enhancer Factor 2-Mediated Synapse Remodeling. Molecular and Cellular Biology, 2016, 36, 70-83.	2.3	40
81	The role of sigma 1 receptor in organization of endoplasmic reticulum signaling microdomains. ELife, 2021, 10, .	6.0	40
82	Acute dosing of latrepirdine (Dimebonâ"¢), a possible Alzheimer therapeutic, elevates extracellular amyloid-β levels in vitro and in vivo. Molecular Neurodegeneration, 2009, 4, 51.	10.8	39
83	Intracellular calcium channels: Inositol-1,4,5-trisphosphate receptors. European Journal of Pharmacology, 2014, 739, 39-48.	3.5	38
84	Stim2-Eb3 Association and Morphology of Dendritic Spines in Hippocampal Neurons. Scientific Reports, 2017, 7, 17625.	3.3	37
85	The high-affinity calcium–calmodulin-binding site does not play a role in the modulation of type 1 inositol 1,4,5-trisphosphate receptor function by calcium and calmodulin. Biochemical Journal, 2002, 365, 659-667.	3.7	33
86	Elucidating a normal function of huntingtin by functional and microarray analysis of huntingtin-null mouse embryonic fibroblasts. BMC Neuroscience, 2008, 9, 38.	1.9	31
87	Molecular Mechanisms and Therapeutics for Spinocerebellar Ataxia Type 2. Neurotherapeutics, 2019, 16, 1050-1073.	4.4	31
88	The role of Bcl-2 proteins in modulating neuronal Ca2+ signaling in health and in Alzheimer's disease. Biochimica Et Biophysica Acta - Molecular Cell Research, 2021, 1868, 118997.	4.1	31
89	Restoring calcium homeostasis to treat Alzheimer's disease: a future perspective. Neurodegenerative Disease Management, 2015, 5, 395-398.	2.2	27
90	Can the Calcium Hypothesis Explain Synaptic Loss in Alzheimer's Disease?. Neurodegenerative Diseases, 2014, 13, 139-141.	1.4	26

#	Article	IF	CITATIONS
91	Derivatives of Piperazines as Potential Therapeutic Agents for Alzheimer's Disease. Molecular Pharmacology, 2019, 95, 337-348.	2.3	26
92	Reactions of Cyclometalated Platinum(II) [Pt(N ^{â^§} C)(PR ₃)Cl] Complexes with Imidazole and Imidazole-Containing Biomolecules: Fine-Tuning of Reactivity and Photophysical Properties via Ligand Design. Inorganic Chemistry, 2019, 58, 204-217.	4.0	26
93	Sigma-1 Receptor (S1R) Interaction with Cholesterol: Mechanisms of S1R Activation and Its Role in Neurodegenerative Diseases. International Journal of Molecular Sciences, 2021, 22, 4082.	4.1	24
94	Presenilins and Calcium Signaling—Systems Biology to the Rescue. Science Signaling, 2013, 6, pe24.	3.6	23
95	Pin1 mediates $A\hat{I}^2$ ₄₂ -induced dendritic spine loss. Science Signaling, 2018, 11, .	3.6	23
96	Association of the Inositol (1,4,5)-Trisphosphate Receptor Ligand Binding Site with Phosphatidylinositol (4,5)-Bisphosphate and Adenophostin A. Molecular Cell Biology Research Communications: MCBRC: Part B of Biochemical and Biophysical Research Communications, 2000, 3, 153-158.	1.6	22
97	Presenilins, Deranged Calcium Homeostasis, Synaptic Loss and Dysfunction in Alzheimer's Disease. Messenger (Los Angeles, Calif: Print), 2012, 1, 53-62.	0.3	19
98	Antagonist of neuronal store-operated calcium entry exerts beneficial effects in neurons expressing PSEN1ΔE9 mutant linked to familial Alzheimer disease. Neuroscience, 2019, 410, 118-127.	2.3	19
99	Amyloid Goes Global. Science Signaling, 2009, 2, pe16.	3.6	18
100	Presenilins as endoplasmic reticulum calcium leak channels and Alzheimer's disease pathogenesis. Science China Life Sciences, 2011, 54, 744-751.	4.9	18
101	Dynamic Microtubules in Alzheimer's Disease: Association with Dendritic Spine Pathology. Biochemistry (Moscow), 2018, 83, 1068-1074.	1.5	18
102	Reversal of Calcium Dysregulation as Potential Approach for Treating Alzheimer's Disease. Current Alzheimer Research, 2020, 17, 344-354.	1.4	18
103	Therapeutic prospects for spinocerebellar ataxia type 2 and 3. Drugs of the Future, 2009, 34, 991.	0.1	17
104	Presenilins: A novel link between intracellular calcium signaling and lysosomal function?. Journal of Cell Biology, 2012, 198, 7-10.	5.2	16
105	Optogenetic Activation of Astrocytes—Effects on Neuronal Network Function. International Journal of Molecular Sciences, 2021, 22, 9613.	4.1	16
106	Mutational Analysis of Sigma-1 Receptor's Role in Synaptic Stability. Frontiers in Neuroscience, 2019, 13, 1012.	2.8	14
107	Light Stimulation Parameters Determine Neuron Dynamic Characteristics. Applied Sciences (Switzerland), 2019, 9, 3673.	2.5	13
108	Response to Shilling et al. (10.1074/jbc.M111.300491). Journal of Biological Chemistry, 2012, 287, 20469.	3.4	12

#	Article	IF	CITATIONS
109	The 2.2â€Angstrom resolution crystal structure of the carboxyâ€ŧerminal region of ataxinâ€3. FEBS Open Bio, 2016, 6, 168-178.	2.3	12
110	In Vivo Analysis of the Climbing Fiber-Purkinje Cell Circuit in SCA2-58Q Transgenic Mouse Model. Cerebellum, 2018, 17, 590-600.	2.5	11
111	Ataxic Symptoms in Huntington's Disease Transgenic Mouse Model Are Alleviated by Chlorzoxazone. Frontiers in Neuroscience, 2020, 14, 279.	2.8	11
112	Optogenetic and chemogenetic modulation of astroglial secretory phenotype. Reviews in the Neurosciences, 2021, 32, 459-479.	2.9	11
113	Genetic Constructs for the Control of Astrocytes' Activity. Cells, 2021, 10, 1600.	4.1	11
114	Functional properties of a pore mutant in theDrosophila melanogasterinositol 1,4,5-trisphosphate receptor. FEBS Letters, 2004, 575, 95-98.	2.8	9
115	Structure–Activity Relationship Study of Subtype-Selective Positive Modulators of K _{Ca} 2 Channels. Journal of Medicinal Chemistry, 2022, 65, 303-322.	6.4	9
116	Amyloid Î ² perturbs elevated heme flux induced with neuronal development. Alzheimer's and Dementia: Translational Research and Clinical Interventions, 2019, 5, 27-37.	3.7	8
117	Presynaptic endoplasmic reticulum and neurotransmission. Cell Calcium, 2020, 85, 102133.	2.4	8
118	In vivo analysis of the spontaneous firing of cerebellar Purkinje cells in awake transgenic mice that model spinocerebellar ataxia type 2. Cell Calcium, 2021, 93, 102319.	2.4	8
119	CaMKIIβ knockdown decreases store-operated calcium entry in hippocampal dendritic spines. IBRO Neuroscience Reports, 2022, 12, 90-97.	1.6	8
120	STIM proteins as regulators of neuronal store-operated calcium influx. Neurodegenerative Disease Management, 2018, 8, 5-7.	2.2	6
121	Calcium hypothesis of neurodegeneration – An update. Biochemical and Biophysical Research Communications, 2019, 520, 667-669.	2.1	6
122	Electrophysiological Studies Support Utility of Positive Modulators of SK Channels for the Treatment of Spinocerebellar Ataxia Type 2. Cerebellum, 2022, 21, 742-749.	2.5	6
123	PDZ domains: evolving classification. FEBS Letters, 2002, 512, 347-349.	2.8	5
124	Sigma-1 receptor as a potential pharmacological target for the treatment of neuropathology. St Petersburg Polytechnical University Journal Physics and Mathematics, 2016, 2, 31-40.	0.3	5
125	An Automated and Quantitative Method to Evaluate Progression of Striatal Pathology in Huntington's Disease Transgenic Mice. Journal of Huntington's Disease, 2014, 3, 343-350.	1.9	4
126	Neurons from skin mimic brain holes. Oncotarget, 2017, 8, 8997-8998.	1.8	4

#	Article	IF	CITATIONS
127	Conformational Models of APP Processing by Gamma Secretase Based on Analysis of Pathogenic Mutations. International Journal of Molecular Sciences, 2021, 22, 13600.	4.1	4
128	Preparation of Microsomes to Study Ca ²⁺ Channels. Cold Spring Harbor Protocols, 2013, 2013, pdb.prot073098.	0.3	3
129	Normalization of Calcium Balance in Striatal Neurons in Huntington's Disease: Sigma 1 Receptor as a Potential Target for Therapy. Biochemistry (Moscow), 2021, 86, 471-479.	1.5	3
130	Differences in Recycling of Apolipoprotein E3 and E4—LDL Receptor Complexes—A Mechanistic Hypothesis. International Journal of Molecular Sciences, 2021, 22, 5030.	4.1	3
131	Bilayer Measurement of Endoplasmic Reticulum Ca2+ Channels. Cold Spring Harbor Protocols, 2013, 2013, pdb.top066225-pdb.top066225.	0.3	2
132	Sigma 1 Receptor, Cholesterol and Endoplasmic Reticulum Contact Sites. Contact (Thousand Oaks) Tj ETQq0 0	OrgBT ∕O∖	verlock 10 Tf 5
133	Mutational re-modeling of di-aspartyl intramembrane proteases: uncoupling physiologically-relevant activities from those associated with Alzheimer's disease. Oncotarget, 2017, 8, 82006-82026.	1.8	2
134	NeuroInfoViewer: A Software Package for Analysis of Miniscope Data. Neuroscience and Behavioral Physiology, 2021, 51, 1199-1205.	0.4	2
135	Cytoskeleton Protein EB3 Contributes to Dendritic Spines Enlargement and Enhances Their Resilience to Toxic Effects of Beta-Amyloid. International Journal of Molecular Sciences, 2022, 23, 2274.	4.1	2
136	Molecular Pathogenesis of Huntington's Disease: The Role of Excitotoxicity. , 2006, , 251-260.		1
137	Reconstitution of Endoplasmic Reticulum InsP3 Receptors into Black Lipid Membranes. Cold Spring Harbor Protocols, 2013, 2013, pdb.prot073106-pdb.prot073106.	0.3	1
138	Hyperexpression of STIM2 protein lowers the amount of Abeta plaques in the brain of Alzheimer's disease mouse model. St Petersburg Polytechnical University Journal Physics and Mathematics, 2016, 2, 329-336.	0.3	1
139	Misery loves company – shared features of neurodegenerative disorders. Biochemical and Biophysical Research Communications, 2017, 483, 979-980.	2.1	1
140	Association with proteasome determines pathogenic threshold of polyglutamine expansion diseases. Biochemical and Biophysical Research Communications, 2021, 536, 95-99.	2.1	1
141	Inositol 1,4,5-Tripshosphate Receptor, Calcium Signaling, and Polyglutamine Expansion Disorders. Current Topics in Membranes, 2010, 66, 323-341.	0.9	0
142	Investigation of low amyloid level toxicity effects on the function of hippocampal neurons. Open Life Sciences, 2014, 10, .	1.4	0
143	The limitation of the Purkinje cells' impulse activity in the laboratory mice's cerebellum by in vivo activation of SK channels. St Petersburg Polytechnical University Journal Physics and Mathematics, 2016, 2, 117-123.	0.3	0
144	TREM2 and calcium signaling in microglia – is it relevant for Alzheimer's disease?. Cell Calcium, 2022, 104, 102584.	2.4	0