Kenji Wada

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9600995/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Solvent-free Multi-alkylation of Urea with Alcohols Catalyzed by Titania-supported Iridium Catalyst with a Strong Metal-Support Interaction. Catalysis Today, 2022, , .	4.4	0
2	Effect of phosphorus-modification of titania supports on the iridium-catalyzed synthesis of benzimidazoles. Catalysis Today, 2021, 375, 410-417.	4.4	12
3	Rapid Multialkylation of Aqueous Ammonia with Alcohols by Heterogeneous Iridium Catalyst under Simple Conditions. ChemCatChem, 2021, 13, 3588-3593.	3.7	1
4	Development of Titania-supported Iridium Catalysts for the Acceptor-less Dehydrogenative Synthesis of Benzoxazoles. Journal of the Japan Petroleum Institute, 2021, 64, 271-279.	0.6	2
5	Titania-supported iridium catalysts for dehydrogenative synthesis of benzimidazoles. Chinese Chemical Letters, 2020, 31, 605-608.	9.0	19
6	Superimposing interferogram method using a multi-slit array to enhance sensitivity and interference definition of spatial-phase-shift interferometers. Optical Review, 2020, 27, 530-541.	2.0	3
7	Development of titania-supported iridium catalysts with excellent low-temperature activities for the synthesis of benzimidazoles via hydrogen transfer. Molecular Catalysis, 2019, 477, 110550.	2.0	8
8	Radiosynthesis of 18F-labeled d-allose. Carbohydrate Research, 2019, 486, 107827.	2.3	1
9	Parametric standing wave generation of a shallow reflection plane in a nonrigid sample for use in a noninvasive blood glucose monitor. Journal of Biomedical Optics, 2019, 24, 1.	2.6	7
10	Striking effects of a titania support on the low-temperature activities of Ir catalysts for the dehydrogenative synthesis of benzimidazole and indole. Catalysis Today, 2018, 303, 235-240.	4.4	24
11	¹²³ I-MIBG myocardial scintigraphy for the diagnosis of DLB: a multicentre 3-year follow-up study. Journal of Neurology, Neurosurgery and Psychiatry, 2018, 89, 1167-1173.	1.9	44
12	Ultrasonic standing wave preparation of a liquid cell for glucose measurements in urine by midinfrared spectroscopy and potential application to smart toilets. Journal of Biomedical Optics, 2018, 23, 1.	2.6	15
13	X-ray structure of a protease-resistant mutant form of human galectin-9 having two carbohydrate recognition domains with a metal-binding site. Biochemical and Biophysical Research Communications, 2017, 490, 1287-1293.	2.1	5
14	Sensitivity improvement of one-shot Fourier spectroscopic imager for realization of noninvasive blood glucose sensors in smartphones. Optical Engineering, 2016, 55, 110506.	1.0	5
15	Ultraminiature one-shot Fourier-spectroscopic tomography. Optical Engineering, 2016, 55, 025106.	1.0	12
16	Ultrasonic separation of a suspension for in situ spectroscopic imaging. Optical Review, 2016, 23, 360-363.	2.0	5
17	Dehydrogenative synthesis of benzimidazoles under mild conditions with supported iridium catalysts. Catalysis Science and Technology, 2016, 6, 1677-1684.	4.1	59
18	Dual Lewis Acidic/Basic Pd _{0.5} Ru _{0.5} –Poly(<i>N</i> â€vinylâ€2â€pyrrolidone) Alloyed Nanoparticle: Outstanding Catalytic Activity and Selectivity in Suzuki–Miyaura Crossâ€Coupling Reaction. ChemCatChem, 2015, 7, 3887-3894.	3.7	25

Kenji Wada

#	Article	IF	CITATIONS
19	Phosphine-stabilized, oxide-supported rhodium catalysts for highly efficient silylative coupling reactions. Research on Chemical Intermediates, 2015, 41, 9575-9586.	2.7	6
20	Diagnostic Accuracy of 123I-Meta-Iodobenzylguanidine Myocardial Scintigraphy in Dementia with Lewy Bodies: A Multicenter Study. PLoS ONE, 2015, 10, e0120540.	2.5	122
21	Palm-Size Ultra-Compact Wide-Field Fourier Spectroscopic Imaging Technology. The Review of Laser Engineering, 2015, 43, 222.	0.0	4
22	Catalytic Properties of Mn-Modified Hexagonal YbFeO3: Noble-metal-free Combustion Catalysts. Chemistry Letters, 2014, 43, 874-876.	1.3	8
23	Ruthenium atalyzed Intermolecular Hydroacylation of Internal Alkynes: The Use of Ceria‧upported Catalyst Facilitates the Catalyst Recycling. Chemistry - A European Journal, 2013, 19, 861-864.	3.3	35
24	Development of Ceria-supported Ruthenium Catalysts for Green Organic Transformation Processes. Journal of the Japan Petroleum Institute, 2013, 56, 69-79.	0.6	16
25	Active Ruthenium Catalysts Based on Phosphine-Modified Ru/CeO ₂ for the Selective Addition of Carboxylic Acids to Terminal Alkynes. ACS Catalysis, 2012, 2, 1753-1759.	11.2	41
26	Highly Selective Linear Dimerization of Styrenes by Ceriaâ€&upported Ruthenium Catalysts. ChemCatChem, 2012, 4, 2062-2067.	3.7	15
27	Facile preparation of silica-supported Ti catalysts effective for the epoxidation of cyclooctene using Ti-bridged silsesquioxanes. Chemical Communications, 2012, 48, 7991.	4.1	12
28	Synthesis of Highly Effective CeO x –MnO y –BaO Catalysts for Direct NO Decomposition. Catalysis Letters, 2012, 142, 32-41.	2.6	14
29	Ceria-supported ruthenium catalysts for the synthesis of indole via dehydrogenative N-heterocyclization. Catalysis Science and Technology, 2011, 1, 1340.	4.1	31
30	Isomerization of <i>n</i> -Hexadecane over Pt–WO ₃ Catalysts Supported on TiO ₂ –SiO ₂ Mixed Oxides Synthesized by Glycothermal Method. Journal of the Japan Petroleum Institute, 2011, 54, 361-365.	0.6	1
31	Optimized synthesis method for K/Co3O4 catalyst towards direct decomposition of N2O. Journal of Materials Science, 2011, 46, 797-805.	3.7	25
32	Enhancement of the Activities of γ-Ga2O3–Al2O3 Catalysts for Methane-SCR of NO by Treatment with NH3. Catalysis Letters, 2011, 141, 1338-1344.	2.6	4
33	Development of Ceria-Supported Ruthenium Catalysts Effective for Various Synthetic Reactions. Catalysis Surveys From Asia, 2011, 15, 1-11.	2.6	22
34	Intermolecular Coupling of Alkynes with Acrylates by Recyclable Oxideâ€Supported Ruthenium Catalysts: Formation of Distorted Ruthenium(IV)â€oxo Species on Ceria as a Key Precursor of Active Species. Advanced Synthesis and Catalysis, 2011, 353, 2837-2843.	4.3	23
35	Catalytic Addition of Aromatic Cï£;H Bonds to Vinylsilanes in the Presence of Ru/CeO ₂ . ChemCatChem, 2010, 2, 1223-1225.	3.7	28
36	Recyclable Solid Ruthenium Catalysts Supported on Metal Oxides for the Addition of Carboxylic Acids to Terminal Alkynes. Advanced Synthesis and Catalysis, 2010, 352, 3045-3052.	4.3	44

Kenji Wada

#	Article	IF	CITATIONS
37	Recyclable Solid Ruthenium Catalysts for the Direct Arylation of Aromatic Cï£;H Bonds. Chemistry - A European Journal, 2010, 16, 4186-4189.	3.3	53
38	Effect of the Preparation Conditions of Ru/CeO2 Catalysts for the Liquid Phase Oxidation of Benzyl Alcohol. Catalysis Letters, 2009, 129, 394-399.	2.6	33
39	Ti-Containing Silsesquioxane Gels with Tunable Porosity: Preparation and Catalytic Activity for the Epoxidation of Cyclooctene by Aqueous Hydrogen Peroxide. Topics in Catalysis, 2009, 52, 693-698.	2.8	8
40	Rhodium atalyzed Decarbonylative Coupling Reactions of Diphenylketene with Alkenes. ChemCatChem, 2009, 1, 82-84.	3.7	10
41	A heterogeneous Ru/CeO2 catalyst effective for transfer-allylation from homoallyl alcohols to aldehydes. Chemical Communications, 2009, , 4112.	4.1	37
42	Inside Cover: Regio- and Stereoselective Synthesis of Enamides and Dienamides by Ruthenium-Catalyzed Co-Oligomerization ofN-Vinylamides with Alkenes or Alkynes (Angew. Chem. Int. Ed. 27/2007). Angewandte Chemie - International Edition, 2007, 46, 5034-5034.	13.8	0
43	Preparation and the catalytic activity of novel Pd nanocluster catalysts utilizing an oligosilsesquioxane ligand. Catalysis Letters, 2006, 112, 63-67.	2.6	18
44	Preparation and the Activity of Novel Silsesquioxane-Based Catalysts. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2006, 64, 836-844.	0.1	4
45	Preparation of Novel Materials for Catalysts Utilizing Metal-Containing Silsesquioxanes. Catalysis Surveys From Asia, 2005, 9, 229-241.	2.6	33
46	Synthesis of novel starburst and dendritic polyhedral oligosilsesquioxanes. Chemical Communications, 2005, , 95.	4.1	28
47	A New Strategy for the Design of Water-Soluble Synthetic Receptors: Specific Recognition of DNA Intercalators and Diamines Chemistry - A European Journal, 2003, 9, 2368-2380.	3.3	32
48	Synthesis of Functionalized Porphyrins as Oxygen Ligand Receptors. Journal of Organic Chemistry, 2003, 68, 5123-5131.	3.2	36
49	Synthesis and Structure of Novel Zerovalent Ruthenium Complexes with Three Pyridine Ligands or Tridentate Pyridyl Ligands. Organometallics, 2003, 22, 1332-1339.	2.3	17
50	Preparation of Porous Acidic Oxides from Group 13 Element-containing Oligosilsesquioxanes Journal of the Japan Petroleum Institute, 2002, 45, 15-23.	0.6	7
51	Synthesis of alkenylene-bridged macrocyclic silsesquioxanes by ruthenium or rhodium-catalyzed ring-closing reactions of bis(allyldimethylsilyl) groups. Chemical Communications, 2001, , 1802-1803.	4.1	8
52	Molecular Recognition of DNA Intercalators at Nanomolar Concentration in Water. Journal of the American Chemical Society, 2001, 123, 6459-6460.	13.7	37
53	Molecular Recognition of Amines and Amino Esters by Zinc Porphyrin Receptors:Â Binding Mechanisms and Solvent Effects. Journal of Organic Chemistry, 2000, 65, 6097-6106.	3.2	76
54	First Ruthenium-Catalyzed Allylation of Thiols Enables the General Synthesis of Allylic Sulfides. Journal of the American Chemical Society, 1999, 121, 8657-8658.	13.7	112

#	Article	IF	CITATIONS
55	Porphyrin Receptors for Amines, Amino Acids, and Oligopeptides in Water. Journal of the American Chemical Society, 1999, 121, 11425-11431.	13.7	93

Novel Reactions Catalyzed by Transition Metal Carbonyls.. Sekiyu Gakkaishi (Journal of the Japan) Tj ETQq000 rgB $_{0.1}^{-1}$ Overlock 10 Tf 50 $_{1.1}^{-1}$

57	Effects of allosteric regulators on proteolysis of rat liver acetyl coenzyme a carboxylase by lysosomal extract. FEBS Letters, 1977, 82, 85-88.	2.8	9
----	--	-----	---