Leonardo Evaristo de Sousa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9600008/publications.pdf

Version: 2024-02-01

933447 1058476 28 252 10 14 citations h-index g-index papers 30 30 30 263 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A New Entry to Purely Organic Thermally Activated Delayed Fluorescence Emitters Based on Pyrido[2,3â€ <i>b</i>]pyrazineâ€Dihydrophenazasilines Donorâ€Acceptor Dyad. Asian Journal of Organic Chemistry, 2022, 11, .	2.7	7
2	The regioisomeric effect on the excited-state fate leading to room-temperature phosphorescence or thermally activated delayed fluorescence in a dibenzophenazine-cored donor–acceptor–donor system. Journal of Materials Chemistry C, 2022, 10, 4905-4913.	5. 5	18
3	Triplet-to-singlet exciton transfer in hyperfluorescent OLED materials. Journal of Materials Chemistry C, 2022, 10, 4914-4922.	5.5	7
4	Dual-photofunctional organogermanium compound based on donor–acceptor–donor architecture. Chemical Communications, 2022, 58, 5889-5892.	4.1	11
5	Comparative study of thermally activated delayed fluorescent properties of donor–acceptor and donor–acceptor–donor architectures based on phenoxazine and dibenzo[<i>a,j</i>]phenazine. Beilstein Journal of Organic Chemistry, 2022, 18, 459-468.	2.2	2
6	Revealing the internal heavy chalcogen atom effect on the photophysics of the dibenzo[<i>a,j</i>)phenazine-cored donor–acceptor–donor triad. Journal of Materials Chemistry C, 2021, 9, 13942-13953.	5 . 5	29
7	Charge localization and hopping in a topologically engineered graphene nanoribbon. Scientific Reports, 2021, 11, 5142.	3.3	5
8	Unified Framework for Photophysical Rate Calculations in TADF Molecules. Journal of Chemical Theory and Computation, 2021, 17, 5816-5824.	5.3	19
9	Assessing the effects of increasing conjugation length on exciton diffusion: from small molecules to the polymeric limit. Physical Chemistry Chemical Physics, 2021, 23, 15635-15644.	2.8	4
10	Ultrafast direct generation of quasiparticles in graphene nanoribbons. Carbon, 2020, 158, 553-558.	10.3	15
11	A Genetic Algorithm Approach to Design Principles for Organic Photovoltaic Materials. Advanced Theory and Simulations, 2020, 3, 2000042.	2.8	3
12	Smooth gap tuning strategy for cove-type graphene nanoribbons. RSC Advances, 2020, 10, 26937-26943.	3.6	10
13	Kinetic Monte Carlo model for the COVID-19 epidemic: Impact of mobility restriction on a COVID-19 outbreak. Physical Review E, 2020, 102, 032133.	2.1	15
14	Choice of Solubilizing Group Is Determinant for Exciton Diffusion Length in Organic Crystals. Journal of Physical Chemistry C, 2020, 124, 5522-5527.	3.1	2
15	On the Physical Origins of Charge Separation at Donor–Acceptor Interfaces in Organic Solar Cells: Energy Bending versus Energy Disorder. Advanced Theory and Simulations, 2020, 3, 1900230.	2.8	11
16	Tuning Penta-Graphene Electronic Properties Through Engineered Line Defects. Scientific Reports, 2020, 10, 8014.	3.3	15
17	Role of Exciton Density in Organic Materials: Diffusion Length, Lifetime, and Quantum Efficiency. Chemistry of Materials, 2019, 31, 6818-6823.	6.7	8
18	Dynamical exciton decay in organic materials: the role of bimolecular recombination. Physical Chemistry Chemical Physics, 2019, 21, 1711-1716.	2.8	1

#	Article	IF	CITATIONS
19	Fast predictions of exciton diffusion length in organic materials. Journal of Materials Chemistry C, 2019, 7, 4066-4071.	5 . 5	13
20	Effective Mass of Quasiparticles in Armchair Graphene Nanoribbons. Scientific Reports, 2019, 9, 17990.	3.3	5
21	Concentration effects on the thermally-activated transport of polarons in conducting polymers. Chemical Physics Letters, 2019, 716, 162-166.	2.6	6
22	Biexciton cascade emission in multilayered organic nanofibers. Applied Physics Letters, 2018, 112, 143301.	3.3	6
23	Optical properties of P3HT and N2200 polymers: a performance study of an optimally tuned DFT functional. Journal of Molecular Modeling, 2018, 24, 32.	1.8	1
24	Exciton Diffusion in Organic Nanofibers: A Monte Carlo Study on the Effects of Temperature and Dimensionality. Scientific Reports, 2018, 8, 14066.	3.3	9
25	Activation Energies and Diffusion Coefficients of Polarons and Bipolarons in Organic Conductors. Journal of Physical Chemistry A, 2018, 122, 5925-5930.	2.5	4
26	Modeling temperature dependent singlet exciton dynamics in multilayered organic nanofibers. Journal of Chemical Physics, 2018, 148, 204101.	3.0	8
27	A joint theoretical and experimental characterization of two acene-thiophene derivatives. Journal of Molecular Modeling, 2017, 23, 52.	1.8	2
28	Modeling the Emission Spectra of Organic Molecules: A Competition between Franck–Condon and Nuclear Ensemble Methods. Journal of Physical Chemistry A, 2016, 120, 5380-5388.	2.5	11