Sonia G Lasher-Trapp

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9599936/publications.pdf

Version: 2024-02-01

35 papers

1,340 citations

471509 17 h-index 35 g-index

36 all docs

36 docs citations

36 times ranked 1460 citing authors

#	Article	IF	CITATIONS
1	Rain in Shallow Cumulus Over the Ocean: The RICO Campaign. Bulletin of the American Meteorological Society, 2007, 88, 1912-1928.	3.3	363
2	Broadening of droplet size distributions from entrainment and mixing in a cumulus cloud. Quarterly Journal of the Royal Meteorological Society, 2005, 131, 195-220.	2.7	153
3	Observations of Clouds, Aerosols, Precipitation, and Surface Radiation over the Southern Ocean: An Overview of CAPRICORN, MARCUS, MICRE, and SOCRATES. Bulletin of the American Meteorological Society, 2021, 102, E894-E928.	3.3	103
4	The Influence of Entrainment and Mixing on the Initial Formation of Rain in a Warm Cumulus Cloud. Journals of the Atmospheric Sciences, 2013, 70, 1727-1743.	1.7	65
5	The effects of climate change on hailstorms. Nature Reviews Earth & Environment, 2021, 2, 213-226.	29.7	57
6	A study of thermals in cumulus clouds. Quarterly Journal of the Royal Meteorological Society, 2005, 131, 1171-1190.	2.7	48
7	Coupling between Land Ecosystems and the Atmospheric Hydrologic Cycle through Biogenic Aerosol Pathways. Bulletin of the American Meteorological Society, 2005, 86, 1738-1742.	3.3	43
8	A Multisensor Investigation of Rime Splintering in Tropical Maritime Cumuli. Journals of the Atmospheric Sciences, 2016, 73, 2547-2564.	1.7	43
9	The Role of Giant and Ultragiant Nuclei in the Formation of Early Radar Echoes in Warm Cumulus Clouds. Journals of the Atmospheric Sciences, 2003, 60, 2557-2572.	1.7	42
10	The Convective Precipitation Experiment (COPE): Investigating the Origins of Heavy Precipitation in the Southwestern United Kingdom. Bulletin of the American Meteorological Society, 2016, 97, 1003-1020.	3.3	40
11	Early Radar Echoes from Ultragiant Aerosol in a Cumulus Congestus: Modeling and Observations. Journals of the Atmospheric Sciences, 2001, 58, 3545-3562.	1.7	39
12	The Influence of Successive Thermals on Entrainment and Dilution in a Simulated Cumulus Congestus. Journals of the Atmospheric Sciences, 2017, 74, 375-392.	1.7	38
13	Future Changes in Hail Occurrence in the United States Determined through Convection-Permitting Dynamical Downscaling. Journal of Climate, 2019, 32, 5493-5509.	3.2	38
14	The minor importance of giant aerosol to precipitation development within small trade wind cumuli observed during RICO. Atmospheric Research, 2010, 95, 386-399.	4.1	26
15	First Radar Echoes and the EarlyZDRHistory of Florida Cumulus. Journals of the Atmospheric Sciences, 2002, 59, 1454-1472.	1.7	25
16	Ideas About the Nature of Science Held by Undergraduate Atmospheric Science Students. Bulletin of the American Meteorological Society, 2008, 89, 1681-1688.	3.3	24
17	An Investigation of the Influence of Droplet Number Concentration and Giant Aerosol Particles upon Supercooled Large Drop Formation in Wintertime Stratiform Clouds. Journal of Applied Meteorology and Climatology, 2008, 47, 2659-2678.	1.5	18
18	A New Three-Dimensional Visualization System for Combining Aircraft and Radar Data and Its Application to RICO Observations. Journal of Atmospheric and Oceanic Technology, 2010, 27, 811-828.	1.3	17

#	Article	IF	CITATIONS
19	Difficulties in Early Ice Detection with the Small Ice Detector-2 HIAPER (SID-2H) in Maritime Cumuli. Journal of Atmospheric and Oceanic Technology, 2014, 31, 1263-1275.	1.3	17
20	On Different Microphysical Pathways to Convective Rainfall. Journal of Applied Meteorology and Climatology, 2018, 57, 2399-2417.	1.5	16
21	On Measuring the Degree of Irregularity in an Observing Network. Journal of Atmospheric and Oceanic Technology, 1997, 14, 120-132.	1.3	14
22	An Atmospheric Visual Analysis and Exploration System. IEEE Transactions on Visualization and Computer Graphics, 2006, 12, 1157-1164.	4.4	13
23	Observational Study of the Thermodynamics and Morphological Characteristics of a Midlatitude Continental Cold Pool Event. Monthly Weather Review, 2020, 148, 719-737.	1.4	13
24	A Successful Introduction of Authentic Research Early in an Undergraduate Atmospheric Science Program. Bulletin of the American Meteorological Society, 2012, 93, 1641-1649.	3.3	12
25	Progress on Predicting the Breadth of Droplet Size Distributions Observed in Small Cumuli. Journals of the Atmospheric Sciences, 2011, 68, 2921-2929.	1.7	9
26	Observations and Modeling of Rime Splintering in Southern Ocean Cumuli. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD035479.	3.3	9
27	Measurements of Ultragiant Aerosol Particles in the Atmosphere from the Small Cumulus Microphysics Study. Journal of Atmospheric and Oceanic Technology, 2002, 19, 402-408.	1.3	7
28	Giant and Ultragiant Aerosol Particle Variability over the Eastern Great Lakes Region. Journal of Applied Meteorology and Climatology, 2007, 46, 651-659.	1.5	7
29	Observations of the microphysical evolution of convective clouds in the southwest of the United Kingdom. Atmospheric Chemistry and Physics, 2018, 18, 15329-15344.	4.9	7
30	Radar-Derived Structural and Precipitation Characteristics of ZDR Columns within Warm-Season Convection over the United Kingdom. Journal of Applied Meteorology and Climatology, 2018, 57, 2485-2505.	1.5	7
31	An Investigation of Hydrometeor Latent Cooling upon Convective Cold Pool Formation, Sustainment, and Properties. Monthly Weather Review, 2019, 147, 3205-3222.	1.4	6
32	Cross-Scale, Multi-Scale, and Multi-Source Data Visualization and Analysis Issues and Opportunities. Mathematics and Visualization, 2014, , 353-360.	0.6	6
33	Cloud-Spacing Effects upon Entrainment and Rainfall along a Convective Line. Journal of Applied Meteorology and Climatology, 2018, 57, 1865-1882.	1.5	5
34	Progress and Challenges in Modeling Dynamics–Microphysics Interactions: From the Pi Chamber to Monsoon Convection. Bulletin of the American Meteorological Society, 2022, 103, E1413-E1420.	3.3	5
35	Alternative implementations of the "pseudoâ€globalâ€warming―methodology for eventâ€based simulations Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD035017.	`3.3 	4