
Enrico Mombelli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/959884/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	In Silico Prediction of Chemically Induced Mutagenicity: A Weight of Evidence Approach Integrating Information from QSAR Models and Read-Across Predictions. Methods in Molecular Biology, 2022, 2425, 149-183.	0.9	5
2	Read-across and new approach methodologies applied in a 10-step framework for cosmetics safety assessment – A case study with parabens. Regulatory Toxicology and Pharmacology, 2022, 132, 105161.	2.7	18
3	Prediction of the Partition Coefficient between Adipose Tissue and Blood for Environmental Chemicals: From Single QSAR Models to an Integrated Approach. Molecular Informatics, 2021, 40, e2000072.	2.5	3
4	Evaluation of the OECD QSAR toolbox automatic workflow for the prediction of the acute toxicity of organic chemicals to fathead minnow. Regulatory Toxicology and Pharmacology, 2021, 122, 104893.	2.7	7
5	QSAR Modeling of ToxCast Assays Relevant to the Molecular Initiating Events of AOPs Leading to Hepatic Steatosis. Journal of Chemical Information and Modeling, 2018, 58, 1501-1517.	5.4	61
6	Adverse outcome pathways: opportunities, limitations and open questions. Archives of Toxicology, 2017, 91, 3477-3505.	4.2	282
7	Results of a round-robin exercise on read-across. SAR and QSAR in Environmental Research, 2016, 27, 371-384.	2.2	18
8	In Silico Prediction of Chemically Induced Mutagenicity: How to Use QSAR Models and Interpret Their Results. Methods in Molecular Biology, 2016, 1425, 87-105.	0.9	8
9	A Physiologically Based Toxicokinetic Model for the Zebrafish <i>Danio rerio</i> . Environmental Science & Technology, 2014, 48, 781-790.	10.0	61
10	Evaluation of QSAR Models for the Prediction of Ames Genotoxicity: A Retrospective Exercise on the Chemical Substances Registered Under the EU REACH Regulation. Journal of Environmental Science and Health, Part C: Environmental Carcinogenesis and Ecotoxicology Reviews, 2014, 32, 273-298.	2.9	57
11	Photolysis of estrone generates estrogenic photoproducts with higher activity than the parent compound. Environmental Science and Pollution Research, 2014, 21, 7818-7827.	5.3	6
12	Modelling Structure Activity Landscapes with Cliffs: a Kernel Regressionâ€Based Approach. Molecular Informatics, 2013, 32, 609-623.	2.5	1
13	Prediction of dose-hepatotoxic response in humans based on toxicokinetic/toxicodynamic modeling with or without in vivo data: A case study with acetaminophen. Toxicology Letters, 2013, 220, 26-34.	0.8	31
14	Perspectives for integrating human and environmental risk assessment and synergies with socio-economic analysis. Science of the Total Environment, 2013, 456-457, 307-316.	8.0	37
15	Applying quantitative structure–activity relationship approaches to nanotoxicology: Current status and future potential. Toxicology, 2013, 313, 15-23.	4.2	151
16	Evaluation of the OECD (Q)SAR Application Toolbox for the profiling of estrogen receptor binding affinities. SAR and QSAR in Environmental Research, 2012, 23, 37-57.	2.2	18
17	A Kernelâ€Based Method for Assessing Uncertainty on Individual QSAR Predictions. Molecular Informatics, 2012, 31, 741-751.	2.5	5
18	Androgen receptor binding affinity: a QSAR evaluation. SAR and QSAR in Environmental Research, 2011, 22, 265-291.	2.2	19

ENRICO MOMBELLI

#	Article	IF	CITATIONS
19	Structural alerts for estimating the carcinogenicity of pesticides and biocides. SAR and QSAR in Environmental Research, 2011, 22, 89-106.	2.2	25
20	What can be learnt from an ecotoxicity database in the framework of the REACh regulation?. Science of the Total Environment, 2011, 409, 489-494.	8.0	15
21	Exploring an ecotoxicity database with the OECD (Q)SAR Toolbox and DRAGON descriptors in order to prioritise testing on algae, daphnids, and fish. Science of the Total Environment, 2011, 409, 3334-3343.	8.0	48
22	A Linear Model to Predict Chronic Effects of Chemicals on Daphnia magna. Bulletin of Environmental Contamination and Toxicology, 2011, 87, 494-498.	2.7	2
23	Substance-tailored testing strategies in toxicology: An in silico methodology based on QSAR modeling of toxicological thresholds and Monte Carlo simulations of toxicological testing. Regulatory Toxicology and Pharmacology, 2010, 56, 82-92.	2.7	8
24	Evaluation of the OECD (Q)SAR Application Toolbox and Toxtree for predicting and profiling the carcinogenic potential of chemicals. SAR and QSAR in Environmental Research, 2010, 21, 731-752.	2.2	30
25	Evaluation of the OECD QSAR Application Toolbox and Toxtree for estimating the mutagenicity of chemicals. Part 1. Aromatic amines. SAR and QSAR in Environmental Research, 2010, 21, 753-769.	2.2	19
26	Evaluation of the OECD QSAR Application Toolbox and Toxtree for estimating the mutagenicity of chemicals. Part 2. α-β unsaturated aliphatic aldehydes. SAR and QSAR in Environmental Research, 2010, 21, 771-783.	2.2	14
27	Maximumâ€Likelihood Estimation of Predictive Uncertainty in Probabilistic QSAR Modeling. QSAR and Combinatorial Science, 2009, 28, 338-344.	1.4	10
28	An Evaluation of the Predictive Ability of the QSAR Software Packages, DEREK, HAZARDEXPERT and TOPKAT, to Describe Chemically-induced Skin Irritation. ATLA Alternatives To Laboratory Animals, 2008, 36, 15-24.	1.0	17
29	3D QSAR Study of Human PLA2 Inhibitors. A Modeling Approach to Select New and Specific Anti-Inflammatory Drugs. Anti-Inflammatory and Anti-Allergy Agents in Medicinal Chemistry, 2006, 5, 175-187.	1.1	2
30	The Membrane Domains Occupied by Glycosylphosphatidylinositol-anchored Prion Protein and Thy-1 Differ in Lipid Composition. Journal of Biological Chemistry, 2004, 279, 7530-7536.	3.4	147
31	Rafts, Little Caves and Large Potholes: How Lipid Structure Interacts with Membrane Proteins to Create Functionally Diverse Membrane Environments. Sub-Cellular Biochemistry, 2004, 37, 35-118.	2.4	27
32	Hydrogen-Bonding Propensities of Sphingomyelin in Solution and in a Bilayer Assembly: A Molecular Dynamics Study. Biophysical Journal, 2003, 84, 1507-1517.	0.5	121
33	Structural prerequisites for the stability of Sso7d from the archaeonSulfolobus solfataricus versushigh pressure and temperature. High Pressure Research, 2000, 19, 311-316.	1.2	Ο
34	Protein folding and unfolding pathways under high pressure. High Pressure Research, 2000, 19, 297-301.	1.2	1
35	The individual tyrosines of proteins: their spectra may or may not differ from those in water or other solvents. BBA - Proteins and Proteomics, 1999, 1431, 238-248.	2.1	9
36	The Role of Phenylalanine 31 in Maintaining the Conformational Stability of Ribonuclease P2 fromSulfolobus solfataricusunder Extreme Conditions of Temperature and Pressureâ€. Biochemistry, 1997, 36, 8733-8742.	2.5	73