Brian D Brown

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9597604/publications.pdf

Version: 2024-02-01

61 papers 7,980 citations

34 h-index 53 g-index

65 all docs

65
docs citations

65 times ranked 13876 citing authors

#	Article	IF	CITATIONS
1	Expansion and Activation of CD103+ Dendritic Cell Progenitors at the Tumor Site Enhances Tumor Responses to Therapeutic PD-L1 and BRAF Inhibition. Immunity, 2016, 44, 924-938.	14.3	857
2	Endogenous microRNA can be broadly exploited to regulate transgene expression according to tissue, lineage and differentiation state. Nature Biotechnology, 2007, 25, 1457-1467.	17.5	539
3	β-Catenin Activation Promotes Immune Escape and Resistance to Anti–PD-1 Therapy in Hepatocellular Carcinoma. Cancer Discovery, 2019, 9, 1124-1141.	9.4	498
4	A conserved dendritic-cell regulatory program limits antitumour immunity. Nature, 2020, 580, 257-262.	27.8	476
5	Endogenous microRNA regulation suppresses transgene expression in hematopoietic lineages and enables stable gene transfer. Nature Medicine, 2006, 12, 585-591.	30.7	460
6	High-throughput assessment of microRNA activity and function using microRNA sensor and decoy libraries. Nature Methods, 2012, 9, 840-846.	19.0	379
7	Exploiting and antagonizing microRNA regulation for therapeutic and experimental applications. Nature Reviews Genetics, 2009, 10, 578-585.	16.3	362
8	The cis-Regulatory Atlas of the Mouse Immune System. Cell, 2019, 176, 897-912.e20.	28.9	315
9	Stable knockdown of microRNA in vivo by lentiviral vectors. Nature Methods, 2009, 6, 63-66.	19.0	301
10	Systemic clinical tumor regressions and potentiation of PD1 blockade with in situ vaccination. Nature Medicine, 2019, 25, 814-824.	30.7	293
11	Tissue-resident macrophages provide a pro-tumorigenic niche to early NSCLC cells. Nature, 2021, 595, 578-584.	27.8	284
12	TLR Signals Induce Phagosomal MHC-I Delivery from the Endosomal Recycling Compartment to Allow Cross-Presentation. Cell, 2014, 158, 506-521.	28.9	270
13	Studying the mononuclear phagocyte system in the molecular age. Nature Reviews Immunology, 2011, 11, 788-798.	22.7	252
14	A microRNA-regulated lentiviral vector mediates stable correction of hemophilia B mice. Blood, 2007, 110, 4144-4152.	1.4	246
15	microRNA-181a has a critical role in ovarian cancer progression through the regulation of the epithelial–mesenchymal transition. Nature Communications, 2014, 5, 2977.	12.8	226
16	Identification and remediation of biases in the activity of RNA ligases in small-RNA deep sequencing. Nucleic Acids Research, 2011, 39, e141-e141.	14.5	219
17	Kinetic Analysis Reveals the Fate of a MicroRNA following Target Regulation in Mammalian Cells. Current Biology, 2011, 21, 369-376.	3.9	206
18	Quiescent Tissue Stem Cells Evade Immune Surveillance. Immunity, 2018, 48, 271-285.e5.	14.3	170

#	Article	IF	Citations
19	CSF-1 controls cerebellar microglia and is required for motor function and social interaction. Journal of Experimental Medicine, 2019, 216, 2265-2281.	8.5	138
20	The miR-126–VEGFR2 axis controls the innate response to pathogen-associated nucleic acids. Nature Immunology, 2014, 15, 54-62.	14.5	116
21	Protein Barcodes Enable High-Dimensional Single-Cell CRISPR Screens. Cell, 2018, 175, 1141-1155.e16.	28.9	107
22	Cbx8 Acts Non-canonically with Wdr5 to Promote Mammary Tumorigenesis. Cell Reports, 2016, 16, 472-486.	6.4	95
23	Helper-dependent adenoviral vectors mediate therapeutic factor VIII expression for several months with minimal accompanying toxicity in a canine model of severe hemophilia A. Blood, 2004, 103, 804-810.	1.4	93
24	Dangerous liaisons: the role of "danger―signals in the immune response to gene therapy. Blood, 2002, 100, 1133-1140.	1.4	91
25	A Critical Role for Fas-Mediated Off-Target Tumor Killing in T-cell Immunotherapy. Cancer Discovery, 2021, 11, 599-613.	9.4	90
26	SIRT6 haploinsufficiency induces BRAFV600E melanoma cell resistance to MAPK inhibitors via IGF signalling. Nature Communications, 2018, 9, 3440.	12.8	80
27	Myeloid Dysregulation in a Human Induced Pluripotent Stem Cell Model of PTPN11 -Associated Juvenile Myelomonocytic Leukemia. Cell Reports, 2015, 13, 504-515.	6.4	79
28	Spatial CRISPR genomics identifies regulators of the tumor microenvironment. Cell, 2022, 185, 1223-1239.e20.	28.9	79
29	Mapping the effects of drugs on the immune system. Nature Biotechnology, 2016, 34, 47-54.	17.5	78
30	miR-146a Suppresses SUMO1 Expression and Induces Cardiac Dysfunction in Maladaptive Hypertrophy. Circulation Research, 2018, 123, 673-685.	4.5	70
31	Hepatitis C virus genetics affects miR-122 requirements and response to miR-122 inhibitors. Nature Communications, 2014, 5, 5408.	12.8	66
32	Variable cellular responses to SARS-CoV-2 in fully vaccinated patients with multiple myeloma. Cancer Cell, 2021, 39, 1442-1444.	16.8	62
33	Identification of Metastasis-Suppressive microRNAs in Primary Melanoma. Journal of the National Cancer Institute, 2015, 107, .	6.3	47
34	GFP-specific CD8 T cells enable targeted cell depletion and visualization of T-cell interactions. Nature Biotechnology, 2015, 33, 1287-1292.	17.5	46
35	BRAFV600E-induced senescence drives Langerhans cell histiocytosis pathophysiology. Nature Medicine, 2021, 27, 851-861.	30.7	38
36	Lymphoma: Immune Evasion Strategies. Cancers, 2015, 7, 736-762.	3.7	35

#	Article	IF	Citations
37	miR-25 Tough Decoy Enhances Cardiac Function in Heart Failure. Molecular Therapy, 2018, 26, 718-729.	8.2	35
38	Genomic instability during reprogramming by nuclear transfer is DNA replication dependent. Nature Cell Biology, 2017, 19, 282-291.	10.3	31
39	Exploiting Allosteric Properties of RAF and MEK Inhibitors to Target Therapy-Resistant Tumors Driven by Oncogenic BRAF Signaling. Cancer Discovery, 2021, 11, 1716-1735.	9.4	30
40	Monitoring MicroRNA Activity and Validating MicroRNA Targets by Reporter-Based Approaches. Methods in Molecular Biology, 2010, 667, 215-233.	0.9	24
41	A microRNA expression and regulatory element activity atlas of the mouse immune system. Nature Immunology, 2021, 22, 914-927.	14.5	19
42	Long-term surviving influenza infected cells evade CD8+ T cell mediated clearance. PLoS Pathogens, 2019, 15, e1008077.	4.7	16
43	Antitumor T-cell Homeostatic Activation Is Uncoupled from Homeostatic Inhibition by Checkpoint Blockade. Cancer Discovery, 2019, 9, 1520-1537.	9.4	12
44	Neoadjuvant clinical trials provide a window of opportunity for cancer drug discovery. Nature Medicine, 2022, 28, 626-629.	30.7	12
45	A Shot in the Bone Corrects a Genetic Disease. Molecular Therapy, 2015, 23, 614-615.	8.2	7
46	Silence of the ROS. Immunity, 2016, 44, 520-522.	14.3	7
47	Micromanaging Tolerance in Hemophilia A Gene Therapy. Molecular Therapy, 2017, 25, 1739-1740.	8.2	5
48	Archives and citation miss equal authors. Nature, 2015, 528, 333-333.	27.8	2
49	High-complexity extracellular barcoding using a viral hemagglutinin. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 2767-2769.	7.1	2
50	In Vivo miRNA Decoy Screen Reveals miR-124a as a Suppressor of Melanoma Metastasis. Frontiers in Oncology, 2022, 12, 852952.	2.8	2
51	"America First―Will Destroy U.S. Science. Cell, 2020, 183, 841-844.	28.9	1
52	Natural pattern-recognition-receptor agonists as adjuvants for in situ vaccination lymphoma immunotherapy Journal of Clinical Oncology, 2018, 36, 123-123.	1.6	1
53	Stealth gene therapy. Blood, 2013, 121, 2168-2169.	1.4	0
54	MicroRNA activity profile in the ovarian cancer cell line OVCAR3 identifies a proapoptotic effect of miR-23a. Advances in Genomics and Genetics, 2015, , 355.	0.8	0

#	Article	IF	CITATIONS
55	Abstract A021: Loss-of-function screen for breast tumor initiating cells reveals PRC1 dependence., 2013,,.		O
56	Natural pattern-recognition-receptor agonists in prophylactic vaccines for in situ vaccination of lymphoma Journal of Clinical Oncology, 2016, 34, e14516-e14516.	1.6	0
57	Discovery of novel, PD-L1-independent immune checkpoints using JEDI GFP-specific CD8 T cells Journal of Clinical Oncology, 2016, 34, 3076-3076.	1.6	O
58	Developing a screening platform for genetic and small molecule targets of cancer immunotherapy Journal of Clinical Oncology, 2018, 36, 66-66.	1.6	0
59	Improving efficacy of PD-1 blockade in unresponsive lymphoma tumors with in situ vaccination through induction of a highly efficient cross-presenting dendritic cell subset Journal of Clinical Oncology, 2018, 36, 76-76.	1.6	O
60	Dynamic changes in the immune infiltrate within hepatocellular carcinoma tumor correlate with response to PD-1 blockade Journal of Clinical Oncology, 2019, 37, e15644-e15644.	1.6	0
61	623â€Notch orchestrates a multifaceted immune evasion program in hepatocellular carcinoma. , 2021, 9, A653-A653.		O