## Irma Chac $\tilde{A}^{3} n$

## List of Publications by Year

 in descending order[^0]

A Method for Measuring Hydrodynamic Force Coefficients Applied to an Articulated Concrete
2.6
2

2 Wake transitions of six tandem circular cylinders at low Reynolds numbers. Physics of Fluids, 2022,

The effect of permeability on the erosion threshold of fine-grained sediments. Coastal Engineering,

6 Hydrodynamic damping of an oscillating cylinder at small Keuleganâe"Carpenter numbers. Journal of

Wake transitions behind a cube at low and moderate Reynolds numbers. Journal of Fluid Mechanics, 2021, 919,

12 Hydrodynamic damping of an oscillating cylinder at small Keuleganâ€"Carpenter numbers â€" CORRIGENDUM. Journal of Fluid Mechanics, 2021, 928,
$3.4 \quad 0$

13 Bistabilities in two parallel KÃ;rmÃjn wakes. Journal of Fluid Mechanics, 2021, 929, .
$3.4 \quad 5$

14 Numerical Investigations on Hydrodynamic Performance of An Open Comb-Type Breakwater Under

| 19 | Hydrodynamic damping of a circular cylinder at low KC: Experiments and an associated model. Marine Structures, 2020, 72, 102777. | 3.8 | 16 |
| :---: | :---: | :---: | :---: |
| 20 | Hydrodynamic behavior of two-dimensional tandem-arranged flapping flexible foils in uniform flow. Physics of Fluids, 2020, 32, 021903. | 4.0 | 19 |
| 21 | Transition to chaos through period doublings of a forced oscillating cylinder in steady current. Journal of Fluid Mechanics, 2020, 887, . | 3.4 | 4 |
| 22 | Modes of synchronisation around a near-wall oscillating cylinder in streamwise directions. Journal of Fluid Mechanics, 2020, 893, . | 3.4 | 3 |
| 23 | Flow separation around a square cylinder at low to moderate Reynolds numbers. Physics of Fluids, 2020, 32, . | 4.0 | 49 |
| 24 | Inverse identification of viscosity coefficient for Newtonian and nonâ€Newtonian slurries during the turbulent pipeline transportation. Asia-Pacific Journal of Chemical Engineering, 2019, 14, e2368. | 1.5 | 1 |
| 25 | Oscillatory flow regimes around four cylinders in a diamond arrangement. Journal of Fluid Mechanics, 2019, 877, 955-1006. | 3.4 | 13 |
| 26 | Identification of viscosity and solid fraction in slurry pipeline transportation based on the inverse heat transfer theory. Applied Thermal Engineering, 2019, 163, 114328. | 6.0 | 6 |
| 27 | Transition to the secondary vortex street in the wake of a circular cylinder. Journal of Fluid Mechanics, 2019, 867, 691-722. | 3.4 | 42 |
| 28 | Eliciting features of 2D greenwater overtopping of a fixed box using modified dam break models. Applied Ocean Research, 2019, 84, 74-91. | 4.1 | 21 |
| 29 | Three-dimensional wake transition of aÂsquareÂcylinder. Journal of Fluid Mechanics, 2018, 842, 102-127. | 3.4 | 63 |
| 30 | Numerical investigation of local scour beneath a sagging subsea pipeline in steady currents. Coastal Engineering, 2018, 136, 106-118. | 4.0 | 14 |
| 31 | Oscillatory flow regimes for a circular cylinder near a plane boundary. Journal of Fluid Mechanics, 2018, 844, 127-161. | 3.4 | 14 |
| 32 | Drag crisis of a circular cylinder near a plane boundary. Ocean Engineering, 2018, 154, 133-142. | 4.3 | 18 |
| 33 | Dependence of critical filling level on excitation amplitude in a rectangular sloshing tank. Ocean Engineering, 2018, 156, 500-511. | 4.3 | 18 |

34 Modelling Changes to Submarine Pipeline Embedment and Stability due to Pipeline Scour. , 2018, , .

[^1]4.3

3

```
37 Estimating the Rate of Scour Propagation Along a Submarine Pipeline in Time-Varying Currents and in
    Fine Grained Sediment. , 2018, , .
```

Subsea Cable Stability on Rocky Seabeds: Comparison of Field Observations Against Conventional and
Novel Design Methods. , 2018, , .

40 Hydrodynamic characteristics of flow past a square cylinder at moderate Reynolds numbers. Physics

```
43 Influence of plane boundary proximity on the Honji instability. Journal of Fluid Mechanics, 2018, 852,
```

Development of a Computational Fluid Dynamics Model to Simulate Three-Dimensional Gap Resonance Driven by Surface Waves. Journal of Offshore Mechanics and Arctic Engineering, 2018, 140, .Driven by Surface Waves. Journal of Offshore Mechanics and Arctic Engineering, 2018, 140, .$3.4 \quad 5$
45 Effect of oscillatory boundary layer on hydrodynamic forces on pipelines. Coastal Engineering, 2018,
Prediction of the secondary wake instability of a circular cylinder with direct numerical simulation.

Computers and Fluids, 2017, 149, 172-180. $\quad 2.5$ 17 | Experimental Study of Local Scour Beneath Two Tandem Pipelines in Steady Current. Coastal |
| :---: |
| 56 |
| Engineering Journal, 2017, 59, 1750002-1-1750002-22. |

58 Modes of synchronisation in the wake of a streamwise oscillatory cylinder. Journal of Fluid
$3.4 \quad 13$
Mechanics, 2017, 832, 146-169.
0

59 | Strouhalâe"Reynolds number relationship for flow past a circular cylinder. Journal of Fluid |
| :--- |
| Mechanics, 2017, 832, 170-188. |

$60 \quad$| Development of a CFD Model to Simulate Three-Dimensional Gap Resonance Applicable to FLNC |
| :--- |
| Side-by-Side Offloading. , 2017, , . |

$3.4 \quad 69$
Theoretical and numerical investigations of wave resonance between two floating bodies in close
proximity. Journal of Hydrodynamics, 2017, 29, 805-816.
The hydrodynamic forces on a circular cylinder in proximity to a wall with intermittent contact in
steady current. Ocean Engineering, 2017, 146, 424-433.

63 Extreme wave run-up and pressure on a vertical seawall. Applied Ocean Research, 2017, 67, 188-200.
$4.1 \quad 24$

## 64 Detecting Local Scour Using Contact Image Sensors. Journal of Hydraulic Engineering, 2017, 143, .

1.5

12
Time Scale of Local Scour around Pipelines in Current, Waves, and Combined Waves and Current.
Journal of Hydraulic Engineering, 2017, 143, .

66 Statistical analyses of a screen cylinder wake. Fluid Dynamics Research, 2017, 49, 015506.
1.3

3
A refined <i>r<li>â€factor algorithm for TVD schemes on arbitrary unstructured meshes. International
Journal for Numerical Methods in Fluids, 2016, 80, 105-139.

Three-dimensional direct numerical simulation of wake transitions of a circular cylinder. Journal of $3.4 \quad 105$ Fluid Mechanics, 2016, 801, 353-391.
Effect of wave boundary layer on hydrodynamic forces on small diameter pipelines. Ocean
Engineering, 2016, 125, 26-30.

Three-dimensional numerical simulations of vortex-induced vibrations of tapered circular cylinders.
Applied Ocean Research, 2016, 60, 1-11.
4.1

Effect of limited sediment supply on sedimentation and the onset of tunnel scour below subsea pipelines. Coastal Engineering, 2016, 116, 103-117.

Two-dimensional numerical study on the effect of water depth on resonance behaviour of the fluid trapped between two side-by-side bodies. Applied Ocean Research, 2016, 58, 218-231.

77 Scour below a subsea pipeline in time varying flow conditions. Applied Ocean Research, 2016, 55, 151-162.
$4.1 \quad 17$

Numerical simulations of steady flow past two cylinders in staggered arrangements. Journal of Fluid
Mechanics, 2015, 765, 114-149.

Oscillatory flow regimes around four cylinders in a square arrangement under small and conditions.
Journal of Fluid Mechanics, 2015, 769, 298-336.

Local scour around two pipelines in tandem in steady current. Coastal Engineering, 2015, 98, 1-15.
4.0

Effect of inlet configuration on wave resonance in the narrow gap of two fixed bodies in close proximity. Ocean Engineering, 2015, 103, 88-102.

Two-dimensional numerical study of vortex-induced vibration and galloping of square and rectangular cylinders in steady flow. Ocean Engineering, 2015, 106, 189-206.
4.3

47
83 Flow and flow-induced vibration of a square array of cylinders in steady currents. Fluid Dynamics
Research, 2015, 47, 045505.

Three-dimensional simulations of flow past two circular cylinders in side-by-side arrangements at right and oblique attacks. Journal of Fluids and Structures, 2015, 55, 64-83.

Two-dimensional and three-dimensional simulations of oscillatory flow around a circular cylinder. Ocean Engineering, 2015, 109, 270-286.

Three-dimensional flow around two circular cylinders of different diameters in a close proximity. Physics of Fluids, 2015, 27, .

A review on TVD schemes and a refined flux-limiter for steady-state calculations. Journal of
Computational Physics, 2015, 302, 114-154.
3.8

70

Lifelong embedment and spanning of a pipeline on a mobile seabed. Coastal Engineering, 2015, 95, 130-146.
4.0

47

Two-dimensional numerical study of vortex shedding regimes of oscillatory flow past two circular
89 cylinders in side-by-side and tandem arrangements at low Reynolds numbers. Journal of Fluid
3.4

45
Mechanics, 2014, 751, 1-37.

Vortex induced vibrations of a rotating circular cylinder at low Reynolds number. Physics of Fluids,
2014,26 ,

3D scour below pipelines under waves and combined waves and currents. Coastal Engineering, 2014, 83, 137-149.
4.0

The vortex shedding around four circular cylinders in an in-line square configuration. Physics of Fluids, 2014, 26, .

Numerical investigation of fluid flow past circular cylinder with multiple control rods at low Reynolds number. Journal of Fluids and Structures, 2014, 48, 235-259.

95 Vortex-induced vibration of a circular cylinder of finite length. Physics of Fluids, 2014, 26, .
4.0

37
3.4

Three-dimensional numerical simulation of vortex-induced vibration of an elastically mour
circular cylinder in steady current. Journal of Fluids and Structures, 2014, 50, 292-311.

Three-dimensional simulation of vortex shedding flow in the wake of a yawed circular cylinder near a
plane boundary at a Reynolds number of 500. Ocean Engineering, 2014, 87, 25-39.

Effects of an axial flow component on the Honji instability. Journal of Fluids and Structures, 2014, 49, 614-639.

Vortex induced vibration and vortex shedding characteristics of two side-by-side circular cylinders
99 of different diameters in close proximity in steady flow. Journal of Fluids and Structures, 2014, 48, 260-279.

100 Lock-in study of two side-by-side cylinders of different diameters in close proximity in steady flow. Journal of Fluids and Structures, 2014, 49, 386-411.

101 Numerical simulation of vortex-induced vibration of a square cylinder at a low Reynolds number.
Physics of Fluids, 2013, 25, .

Three-dimensional transition of vortex shedding flow around a circular cylinder at right and oblique attacks. Physics of Fluids, 2013, 25, .

The effect of a piggyback cylinder on the flow characteristics in oscillatory flow. Ocean Engineering, 2013, 62, 45-55.

A new facility for studying ocean-structureâ€"seabed interactions: The O-tube. Coastal Engineering, 2013, 82, 88-101.

Revisiting the Mechanics of Onset of Scour Below Subsea Pipelines in Steady Currents. , 2013, , .
1

Numerical Simulation of Two-Degree-of-Freedom Vortex-Induced Vibration of a Circular Cylinder
106 Between Two Lateral Plane Walls in Steady Currents. Journal of Fluids Engineering, Transactions of
1.5

54 the ASME, 2012, 134, .

Vortex-Induced Vibration of Two Side-by-Side Circular Cylinders of Different Diameters in Close Proximity in Steady Flow. , 2012, , .

109 Pipeline Stabilisation Using Pre-Trenching and Sand Backfill. , 2012, , . 0

Two-degree-of-freedom vortex-induced vibration of two mechanically coupled cylinders of different diameters in steady current. Journal of Fluids and Structures, 2012, 35, 133-159.
3.4

49

Gravity Anchors Astride Subsea Pipelines Subject to Oscillatory and Combined Steady and Oscillatory
1
111 Flows., 2012, , .

Hydrodynamic Forces on a Pipeline With Uneven Embedment. , 2012, , .

Experimental study of local scour around subsea caissons in steady currents. Coastal Engineering 2012, 60, 30-40.

Numerical investigation of vortex-induced vibration of a circular cylinder in transverse direction in oscillatory flow. Ocean Engineering, 2012, 41, 39-52.
4.3

Numerical simulation of vortex-induced vibration of four circular cylinders in a square
configuration. Journal of Fluids and Structures, 2012, 31, 125-140.
3.4

61

116 Calibration of UWAâ $€^{T M}$ S O-Tube Flume Facility. , 2012, , .
2
Steady Streaming around a Circular Cylinder near a Plane Boundary due to Oscillatory Flow. Journalof Hydraulic Engineering, 2011, 137, 23-33.

Vortex-Induced Vibration of Two Mechanically Coupled Cylinders of Different Diameters in Steady
118 Flow., 2011,,.
2

Direct numerical simulation of oscillatory flow around a circular cylinder at low
Keuleganấ $€^{\prime C}$ Carpenter number. Journal of Fluid Mechanics, 2011, 666, 77-103.
3.4

50

Numerical Investigation of Scale Effects in Modelling Scour Below Offshore Pipelines Under Steady
120 Currents. , 2011, ,.
0

Three-dimensional numerical simulation of oscillatory flow around a circular cylinder at right and
$4.3 \quad 16$ oblique attacks. Ocean Engineering, 2011, 38, 2056-2069.

Numerical simulation of two-degree-of-freedom vortex-induced vibration of a circular cylinder close to a plane boundary. Journal of Fluids and Structures, 2011, 27, 1097-1110.
3.4

132

Modelling of multi-bodies in close proximity under water wavesâ€" Fluid resonance in narrow gaps.
Science China: Physics, Mechanics and Astronomy, 2011, 54, 16-25.
5.1

60

Implementation of the moving particle semi-implicit method on GPU. Science China: Physics, Mechanics
5.1

16

Numerical simulation of a partially buried pipeline in a permeable seabed subject to combined
oscillatory flow and steady current. Ocean Engineering, 2011, 38, 1225-1236.
4.3

12

Eulerâ€"Euler two-phase flow simulation of tunnel erosion beneath marine pipelines. Applied Ocean
4.1

39

127 Parallelization of LBM Code Using CUDA Capable GPU Platform for 3D Single and Two-Sided
Non-Facing Lid-Driven Cavity Flow. , 2011, , .

128 Experimental Study of Erosion Threshold of Reconstituted Sediments., 2011, , .
7

Numerical Investigation of Vortex-Induced Vibration (VIV) of a Circular Cylinder in Oscillatory Flow., 2011, , .

130 Direct Numerical Simulation of Effects of Small Angle of Incidence on Honji Instability. , 2011, , . 0

131 Blockage Ratio and Mesh Dependency Study for Lattice Boltzmann Flow around Cylinder. , 2010, , .
1

132 Numerical and Experimental Study of Natural Backfill of Pipeline in a Trench Under Steady Currents.,
2010, , .

A 2-D Model to Predict Time Development of Scour below Pipelines with Spoiler. AIP Conference
Proceedings, 2010, , .

Onset of Scour Below Pipeline Under Combined Waves and Current. , 2010, , .
1

Numerical Investigation of Vortex-Induced Vibration of a Circular Cylinder Close to a Plane
Boundary., 2010, , .

A parallel three-dimensional scour model to predict flow and scour below a submarine pipeline. Open
Physics, 2010, 8, 604-619.

Numerical investigation of fluid resonance in two narrow gaps of three identical rectangular
137 structures. Applied Ocean Research, 2010, 32, 177-190.
4.1

79

Experimental and numerical investigation of local scour around a submerged vertical circular cylinder in steady currents. Coastal Engineering, 2010, 57, 709-721.

Performance investigation of 2D lattice Boltzmann simulation of forces on a circular cylinder. Transactions of Tianjin University, 2010, 16, 417-423.

140 Finite element analysis of flow control using porous media. Ocean Engineering, 2010, 37, 1357-1366.
4.3

28

Numerical investigation of local scour below a vibrating pipeline under steady currents. Coastal
$141 \quad$ Numerical investigation of local scineering, 2010, 57, 397-406.

Numerical simulation and comparison of potential flow and viscous fluid models in near trapping of
142 narrow gaps. Journal of Hydrodynamics, 2010, 22, 120-125.
3.2

28

Three-dimensional numerical simulation of flow around a circular cylinder under combined steady
and oscillatory flow. Journal of Hydrodynamics, 2010, 22, 144-149.
3.2

8
$\qquad$
4.0

81

144 Investigation on Suppression of Vortex-Induced Vibration Using Helical Strakes. , 2010, , .
145 Development of 3-D Numerical Wave Tank and Applications on Comb-Type Breakwater. , 2010, , . ..... 2
146 Numerical Model for Three-Dimensional Scour below a Pipeline in Steady Currents. , 2010, , . ..... 5
147 Modelling of Flow Around a Square Cylinder of Different Roughness Using a Lattice Boltzmann
Model. , 2009, , . ..... 0
Experimental Investigation of Local Scour Around a Submerged Vertical Circular Cylinder in Steady Currents. , 2009, , .
Direct numerical simulation of three-dimensional flow past a yawed circular cylinder of infinite length. Journal of Fluids and Structures, 2009, 25, 831-847. 3.4 ..... 133Steady streaming around a circular cylinder in an oscillatory flow. Ocean Engineering, 2009, 36,1089-1097.$4.3 \quad 26$
151 A numerical model for onset of scour below offshore pipelines. Coastal Engineering, 2009, 56, 458-466. ..... 4.0 ..... 57Three-dimensional scour below offshore pipelines in steady currents. Coastal Engineering, 2009, 56,577-590.
Numerical Modeling of Local Scour below a Piggyback Pipeline in Currents. Journal of HydraulicEngineering, 2008, 134, 1452-1463.1.554Numerical Modeling of Flow and Hydrodynamic Forces around a Piggyback Pipeline near the Seabed.
1.2 ..... 34
Journal of Waterway, Port, Coastal and Ocean Engineering, 2007, 133, 286-295.
Numerical simulation of solitary wave scattering by a circular cylinder array. Ocean Engineering,2007, 34, 489-499.
4.3 ..... 34
156 A finite volume solution of wave forces on submarine pipelines. Ocean Engineering, 2007, 34, 1955-1964. ..... 4.3 ..... 11
157 THREE-DIMENSIONAL NUMERICAL MODEL OF FLOW AND SCOUR AROUND A VERTICAL CYLINDER. , 2007 , , . ..... 1

A finite element solution of wave forces on a horizontal circular cylinder close to the sea-bed. Journal of Hydrodynamics, 2006, 18, 137-143.

Numerical simulation of the oscillatory flow around two cylinders in tandem. Journal of Hydrodynamics, 2006, 18, 189-195.

0

160 Numerical Modeling of Local Scour Below a Piggyback Pipeline in Currents. , 2006, , 25.
0

A finite element solution of wave forces on a horizontal circular cylinder close to the sea-bed.
Journal of Hydrodynamics, 2006, 18, 139-145.
3.2

6

Numerical simulation of the oscillatory flow around two cylinders in tandem. Journal of Hydrodynamics, 2006, 18, 191-197.

| 163 | A semi-analytical solution method for two-dimensional Helmholtz equation. Applied Ocean Research, 2006, 28, 193-207. | 4.1 | 24 |
| :---: | :---: | :---: | :---: |
| 164 | A modified scaled boundary finite-element method for problems with parallel side-faces. Part II. Application and evaluation. Applied Ocean Research, 2005, 27, 224-234. | 4.1 | 36 |
| 165 | Numerical study of the Reynolds-number dependence of two-dimensional scour beneath offshore pipelines in steady currents. Ocean Engineering, 2005, 32, 1590-1607. | 4.3 | 28 |
| 166 | Numerical modeling of flow and scour below a pipeline in currents. Coastal Engineering, 2005, 52, 43-62. | 4.0 | 147 |
| 167 | Numerical modeling of flow and scour below a pipeline in currents. Coastal Engineering, 2005, 52, 25-42. | 4.0 | 82 |
| 168 | Numerical simulation of viscous flow past two circular cylinders of different diameters. Applied Ocean Research, 2005, 27, 39-55. | 4.1 | 120 |
| 169 | A modified scaled boundary finite-element method for problems with parallel side-faces. Part I. Theoretical developments. Applied Ocean Research, 2005, 27, 216-223. | 4.1 | 36 |
| 170 | Numerical Model for Wave-Induced Scour below a Submarine Pipeline. Journal of Waterway, Port, Coastal and Ocean Engineering, 2005, 131, 193-202. | 1.2 | 77 |
| 171 | LOCAL SCOUR AROUND A VERTICAL PILE WITH A CAISSON FOUNDATION. , 2004, |  | 2 |

172 THREE DIMENSIONAL SCOUR BELOW OFFSHORE PIPELINES. , 2004, , . ..... 0
173 Potential flow around obstacles using the scaled boundary finite-element method. International Journal for Numerical Methods in Fluids, 2003, 41, 721-741.
1.683
174 Modelling of Local Scour Below a Sagging Pipeline. Coastal Engineering Journal, 2003, 45, 189-210.1.921
175 Prediction of Lee-Wake Scouring of Pipelines in Currents. Journal of Waterway, Port, Coastal and ..... 1.2 ..... 57
Ocean Engineering, 2001, 127, 106-112.Wave-induced seabed instability around a buried pipeline in a poro-elastic seabed. Ocean Engineering,


[^0]:    Source: https:/|exaly.com/author-pdf/9595336/publications.pdf
    Version: 2024-02-01

[^1]:    Observed changes to the stability of a subsea pipeline caused by seabed mobility. Ocean Engineering,
    35 2018, 169, 159-176.
    2018, 169, 159-176.

