Irma Chacón

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9595336/publications.pdf

Version: 2024-02-01

		61984	123424
178	4,844 citations	43	61
papers	citations	h-index	g-index
180	180	180	1923
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A Method for Measuring Hydrodynamic Force Coefficients Applied to an Articulated Concrete Mattress. Journal of Marine Science and Engineering, 2022, 10, 144.	2.6	2
2	Wake transitions of six tandem circular cylinders at low Reynolds numbers. Physics of Fluids, 2022, 34, .	4.0	12
3	Hydrodynamic forces on subsea cables immersed in wave boundary layers. Coastal Engineering, 2022, 174, 104101.	4.0	4
4	The effect of permeability on the erosion threshold of fine-grained sediments. Coastal Engineering, 2021, 163, 103813.	4.0	6
5	Flow around a surface-mounted finite circular cylinder completely submerged within the bottom boundary layer. European Journal of Mechanics, B/Fluids, 2021, 86, 169-197.	2.5	20
6	Hydrodynamic damping of an oscillating cylinder at small Keulegan–Carpenter numbers. Journal of Fluid Mechanics, 2021, 913, .	3.4	9
7	Large-eddy simulation of flow past a circular cylinder for Reynolds numbers 400 to 3900. Physics of Fluids, 2021, 33, .	4.0	64
8	Effect of Ammonia Fumigation Treatment on Wood Color and Chemical Composition. International Journal of Polymer Science, 2021, 2021, 1-8.	2.7	1
9	Experimental study of local scour around submerged compound piles in steady current. Coastal Engineering, 2021, 165, 103831.	4.0	13
10	Wake transitions behind a cube at low and moderate Reynolds numbers. Journal of Fluid Mechanics, $2021, 919, .$	3.4	10
11	Damping of piston mode resonance between two fixed boxes. Physics of Fluids, 2021, 33, .	4.0	16
12	Hydrodynamic damping of an oscillating cylinder at small Keulegan–Carpenter numbers – CORRIGENDUM. Journal of Fluid Mechanics, 2021, 928, .	3.4	0
13	Bistabilities in two parallel Kármán wakes. Journal of Fluid Mechanics, 2021, 929, .	3.4	5
14	Numerical Investigations on Hydrodynamic Performance of An Open Comb-Type Breakwater Under Medium Water Levels. China Ocean Engineering, 2021, 35, 866-877.	1.6	0
15	A dynamic solution for predicting resonant frequency of piston mode fluid oscillation in moonpools/narrow gaps. Journal of Hydrodynamics, 2020, 32, 54-69.	3.2	8
16	Effect of a skirted mudmat foundation on local scour around a submerged structure. Ocean Engineering, 2020, 218, 108127.	4.3	15
17	The bypass transition mechanism of the Stokes boundary layer in the intermittently turbulent regime. Journal of Fluid Mechanics, 2020, 896, .	3.4	8
18	Transition to chaos in the cylinder wake through the Mode C flow. Physics of Fluids, 2020, 32, .	4.0	20

#	Article	IF	CITATIONS
19	Hydrodynamic damping of a circular cylinder at low KC: Experiments and an associated model. Marine Structures, 2020, 72, 102777.	3.8	16
20	Hydrodynamic behavior of two-dimensional tandem-arranged flapping flexible foils in uniform flow. Physics of Fluids, 2020, 32, 021903.	4.0	19
21	Transition to chaos through period doublings of a forced oscillating cylinder in steady current. Journal of Fluid Mechanics, 2020, 887, .	3.4	4
22	Modes of synchronisation around a near-wall oscillating cylinder in streamwise directions. Journal of Fluid Mechanics, 2020, 893, .	3.4	3
23	Flow separation around a square cylinder at low to moderate Reynolds numbers. Physics of Fluids, 2020, 32, .	4.0	49
24	Inverse identification of viscosity coefficient for Newtonian and nonâ€Newtonian slurries during the turbulent pipeline transportation. Asia-Pacific Journal of Chemical Engineering, 2019, 14, e2368.	1.5	1
25	Oscillatory flow regimes around four cylinders in a diamond arrangement. Journal of Fluid Mechanics, 2019, 877, 955-1006.	3.4	13
26	Identification of viscosity and solid fraction in slurry pipeline transportation based on the inverse heat transfer theory. Applied Thermal Engineering, 2019, 163, 114328.	6.0	6
27	Transition to the secondary vortex street in the wake of a circular cylinder. Journal of Fluid Mechanics, 2019, 867, 691-722.	3.4	42
28	Eliciting features of 2D greenwater overtopping of a fixed box using modified dam break models. Applied Ocean Research, 2019, 84, 74-91.	4.1	21
29	Three-dimensional wake transition of aÂsquareÂcylinder. Journal of Fluid Mechanics, 2018, 842, 102-127.	3.4	63
30	Numerical investigation of local scour beneath a sagging subsea pipeline in steady currents. Coastal Engineering, 2018, 136, 106-118.	4.0	14
31	Oscillatory flow regimes for a circular cylinder near a plane boundary. Journal of Fluid Mechanics, 2018, 844, 127-161.	3.4	14
32	Drag crisis of a circular cylinder near a plane boundary. Ocean Engineering, 2018, 154, 133-142.	4.3	18
33	Dependence of critical filling level on excitation amplitude in a rectangular sloshing tank. Ocean Engineering, 2018, 156, 500-511.	4.3	18
34	Modelling Changes to Submarine Pipeline Embedment and Stability due to Pipeline Scour. , 2018, , .		2
35	Observed changes to the stability of a subsea pipeline caused by seabed mobility. Ocean Engineering, 2018, 169, 159-176.	4.3	3
36	Pipeline and Cable Stability: Updated State of the Art. , 2018, , .		1

#	Article	IF	Citations
37	Estimating the Rate of Scour Propagation Along a Submarine Pipeline in Time-Varying Currents and in Fine Grained Sediment. , $2018, \ldots$		1
38	Hydrodynamics on Circular Cylinder Close to a Wall: Effects From Wall Boundary Layers. , 2018, , .		0
39	Subsea Cable Stability on Rocky Seabeds: Comparison of Field Observations Against Conventional and Novel Design Methods. , 2018, , .		1
40	Hydrodynamic characteristics of flow past a square cylinder at moderate Reynolds numbers. Physics of Fluids, 2018, 30, .	4.0	62
41	Experimental investigation of local scour around submerged piles in steady current. Coastal Engineering, 2018, 142, 27-41.	4.0	38
42	On regime C flow around an oscillating circularÂcylinder. Journal of Fluid Mechanics, 2018, 849, 968-1008.	3.4	10
43	Influence of plane boundary proximity on the Honji instability. Journal of Fluid Mechanics, 2018, 852, 226-256.	3.4	5
44	Development of a Computational Fluid Dynamics Model to Simulate Three-Dimensional Gap Resonance Driven by Surface Waves. Journal of Offshore Mechanics and Arctic Engineering, 2018, 140, .	1.2	14
45	Effect of oscillatory boundary layer on hydrodynamic forces on pipelines. Coastal Engineering, 2018, 140, 114-123.	4.0	8
46	The influence of permeability on the erosion rate of fine-grained marine sediments. Coastal Engineering, 2018, 140, 124-135.	4.0	11
47	Coherent structures in a screen cylinder wake. Physical Review Fluids, 2018, 3, .	2.5	4
48	Flow regimes for a square cross-section cylinder in oscillatory flow. Journal of Fluid Mechanics, 2017, 813, 85-109.	3.4	13
49	Two- and three-dimensional instabilities in the wake of a circular cylinder near a moving wall. Journal of Fluid Mechanics, 2017, 812, 435-462.	3.4	49
50	Three-Dimensional Numerical Simulations of Vortex-Induced Vibrations of a Circular Cylinder in Oscillatory Flow. Journal of Waterway, Port, Coastal and Ocean Engineering, 2017, 143, .	1.2	6
51	On numerical aspects of simulating flow past a circular cylinder. International Journal for Numerical Methods in Fluids, 2017, 85, 113-132.	1.6	14
52	Three-dimensional wake transition for a circular cylinder near a moving wall. Journal of Fluid Mechanics, 2017, 818, 260-287.	3.4	22
53	Numerical investigation of influence of wave directionality on the water resonance at a narrow gap between two rectangular barges. Acta Oceanologica Sinica, 2017, 36, 104-111.	1.0	14
54	Direct numerical simulation of flow around a surface-mounted finite square cylinder at low Reynolds numbers. Physics of Fluids, 2017, 29, .	4.0	71

#	Article	IF	CITATIONS
55	Prediction of the secondary wake instability of a circular cylinder with direct numerical simulation. Computers and Fluids, 2017, 149, 172-180.	2.5	17
56	Experimental Study of Local Scour Beneath Two Tandem Pipelines in Steady Current. Coastal Engineering Journal, 2017, 59, 1750002-1-1750002-22.	1.9	11
57	Time Scale of Scour Below Submarine Pipeline Under Combined Waves and Currents With Oblique Incident Angle., 2017,,.		O
58	Modes of synchronisation in the wake of a streamwise oscillatory cylinder. Journal of Fluid Mechanics, 2017, 832, 146-169.	3.4	13
59	Strouhal–Reynolds number relationship for flow past a circular cylinder. Journal of Fluid Mechanics, 2017, 832, 170-188.	3.4	69
60	Development of a CFD Model to Simulate Three-Dimensional Gap Resonance Applicable to FLNG Side-by-Side Offloading. , 2017, , .		0
61	Theoretical and numerical investigations of wave resonance between two floating bodies in close proximity. Journal of Hydrodynamics, 2017, 29, 805-816.	3.2	26
62	The hydrodynamic forces on a circular cylinder in proximity to a wall with intermittent contact in steady current. Ocean Engineering, 2017, 146, 424-433.	4.3	14
63	Extreme wave run-up and pressure on a vertical seawall. Applied Ocean Research, 2017, 67, 188-200.	4.1	24
64	Detecting Local Scour Using Contact Image Sensors. Journal of Hydraulic Engineering, 2017, 143, .	1.5	12
65	Time Scale of Local Scour around Pipelines in Current, Waves, and Combined Waves and Current. Journal of Hydraulic Engineering, 2017, 143, .	1.5	26
66	Statistical analyses of a screen cylinder wake. Fluid Dynamics Research, 2017, 49, 015506.	1.3	3
67	A refined <i>r</i> àâ€factor algorithm for TVD schemes on arbitrary unstructured meshes. International Journal for Numerical Methods in Fluids, 2016, 80, 105-139.	1.6	14
68	Three-dimensional direct numerical simulation of wake transitions of a circular cylinder. Journal of Fluid Mechanics, 2016, 801, 353-391.	3.4	105
69	Vortex-induced vibration of four cylinders in an in-line square configuration. Physics of Fluids, 2016, 28, .	4.0	23
70	Stable state of Mode A for flow past a circular cylinder. Physics of Fluids, 2016, 28, 104103.	4.0	20
71	Sedimentation-induced burial of subsea pipelines: Observations from field data and laboratory experiments. Coastal Engineering, 2016, 114, 137-158.	4.0	42
72	Unlocking the Benefits of Long-Term Pipeline-Embedment Processes: Image Analysis–Based Processing of Historic Survey Data. Journal of Pipeline Systems Engineering and Practice, 2016, 7, 04016008.	1.6	2

#	Article	lF	Citations
73	Effect of wave boundary layer on hydrodynamic forces on small diameter pipelines. Ocean Engineering, 2016, 125, 26-30.	4.3	8
74	Three-dimensional numerical simulations of vortex-induced vibrations of tapered circular cylinders. Applied Ocean Research, 2016, 60, 1-11.	4.1	14
75	Effect of limited sediment supply on sedimentation and the onset of tunnel scour below subsea pipelines. Coastal Engineering, 2016, 116, 103-117.	4.0	12
76	Two-dimensional numerical study on the effect of water depth on resonance behaviour of the fluid trapped between two side-by-side bodies. Applied Ocean Research, 2016, 58, 218-231.	4.1	34
77	Scour below a subsea pipeline in time varying flow conditions. Applied Ocean Research, 2016, 55, 151-162.	4.1	17
78	Numerical simulations of steady flow past two cylinders in staggered arrangements. Journal of Fluid Mechanics, 2015, 765, 114-149.	3.4	54
79	Oscillatory flow regimes around four cylinders in a square arrangement under small and conditions. Journal of Fluid Mechanics, 2015, 769, 298-336.	3.4	34
80	Local scour around two pipelines in tandem in steady current. Coastal Engineering, 2015, 98, 1-15.	4.0	40
81	Effect of inlet configuration on wave resonance in the narrow gap of two fixed bodies in close proximity. Ocean Engineering, 2015, 103, 88-102.	4.3	62
82	Two-dimensional numerical study of vortex-induced vibration and galloping of square and rectangular cylinders in steady flow. Ocean Engineering, 2015, 106, 189-206.	4.3	47
83	Flow and flow-induced vibration of a square array of cylinders in steady currents. Fluid Dynamics Research, 2015, 47, 045505.	1.3	11
84	Three-dimensional simulations of flow past two circular cylinders in side-by-side arrangements at right and oblique attacks. Journal of Fluids and Structures, 2015, 55, 64-83.	3.4	27
85	Two-dimensional and three-dimensional simulations of oscillatory flow around a circular cylinder. Ocean Engineering, 2015, 109, 270-286.	4.3	14
86	Three-dimensional flow around two circular cylinders of different diameters in a close proximity. Physics of Fluids, 2015, 27, .	4.0	11
87	A review on TVD schemes and a refined flux-limiter for steady-state calculations. Journal of Computational Physics, 2015, 302, 114-154.	3.8	70
88	Lifelong embedment and spanning of a pipeline on a mobile seabed. Coastal Engineering, 2015, 95, 130-146.	4.0	47
89	Two-dimensional numerical study of vortex shedding regimes of oscillatory flow past two circular cylinders in side-by-side and tandem arrangements at low Reynolds numbers. Journal of Fluid Mechanics, 2014, 751, 1-37.	3.4	45
90	Numerical Simulation of Fluid Resonance in Narrow Gap of Two Bodies in Close Proximity. , 2014, , .		1

#	Article	IF	Citations
91	Vortex induced vibrations of a rotating circular cylinder at low Reynolds number. Physics of Fluids, 2014, 26, .	4.0	39
92	3D scour below pipelines under waves and combined waves and currents. Coastal Engineering, 2014, 83, 137-149.	4.0	66
93	The vortex shedding around four circular cylinders in an in-line square configuration. Physics of Fluids, 2014, 26, .	4.0	46
94	Numerical investigation of fluid flow past circular cylinder with multiple control rods at low Reynolds number. Journal of Fluids and Structures, 2014, 48, 235-259.	3.4	59
95	Vortex-induced vibration of a circular cylinder of finite length. Physics of Fluids, 2014, 26, .	4.0	37
96	Three-dimensional numerical simulation of vortex-induced vibration of an elastically mounted rigid circular cylinder in steady current. Journal of Fluids and Structures, 2014, 50, 292-311.	3.4	101
97	Three-dimensional simulation of vortex shedding flow in the wake of a yawed circular cylinder near a plane boundary at a Reynolds number of 500. Ocean Engineering, 2014, 87, 25-39.	4.3	25
98	Effects of an axial flow component on the Honji instability. Journal of Fluids and Structures, 2014, 49, 614-639.	3.4	7
99	Vortex induced vibration and vortex shedding characteristics of two side-by-side circular cylinders of different diameters in close proximity in steady flow. Journal of Fluids and Structures, 2014, 48, 260-279.	3.4	32
100	Lock-in study of two side-by-side cylinders of different diameters in close proximity in steady flow. Journal of Fluids and Structures, 2014, 49, 386-411.	3.4	18
101	Numerical simulation of vortex-induced vibration of a square cylinder at a low Reynolds number. Physics of Fluids, 2013, 25, .	4.0	93
102	Three-dimensional transition of vortex shedding flow around a circular cylinder at right and oblique attacks. Physics of Fluids, $2013, 25, \ldots$	4.0	46
103	The effect of a piggyback cylinder on the flow characteristics in oscillatory flow. Ocean Engineering, 2013, 62, 45-55.	4.3	17
104	A new facility for studying ocean-structure–seabed interactions: The O-tube. Coastal Engineering, 2013, 82, 88-101.	4.0	32
105	Revisiting the Mechanics of Onset of Scour Below Subsea Pipelines in Steady Currents. , 2013, , .		1
106	Numerical Simulation of Two-Degree-of-Freedom Vortex-Induced Vibration of a Circular Cylinder Between Two Lateral Plane Walls in Steady Currents. Journal of Fluids Engineering, Transactions of the ASME, 2012, 134, .	1.5	54
107	Vortex-Induced Vibration of Two Side-by-Side Circular Cylinders of Different Diameters in Close Proximity in Steady Flow. , 2012, , .		0
108	A Re-Examination of the Hydrodynamic Forces Acting on Partially-Buried Submarine Pipelines. , 2012, , .		0

#	Article	IF	CITATIONS
109	Pipeline Stabilisation Using Pre-Trenching and Sand Backfill. , 2012, , .		О
110	Two-degree-of-freedom vortex-induced vibration of two mechanically coupled cylinders of different diameters in steady current. Journal of Fluids and Structures, 2012, 35, 133-159.	3.4	49
111	Gravity Anchors Astride Subsea Pipelines Subject to Oscillatory and Combined Steady and Oscillatory Flows. , 2012, , .		1
112	Hydrodynamic Forces on a Pipeline With Uneven Embedment. , 2012, , .		0
113	Experimental study of local scour around subsea caissons in steady currents. Coastal Engineering, 2012, 60, 30-40.	4.0	54
114	Numerical investigation of vortex-induced vibration of a circular cylinder in transverse direction in oscillatory flow. Ocean Engineering, 2012, 41, 39-52.	4.3	57
115	Numerical simulation of vortex-induced vibration of four circular cylinders in a square configuration. Journal of Fluids and Structures, 2012, 31, 125-140.	3.4	61
116	Calibration of UWA's O-Tube Flume Facility. , 2012, , .		2
117	Steady Streaming around a Circular Cylinder near a Plane Boundary due to Oscillatory Flow. Journal of Hydraulic Engineering, 2011, 137, 23-33.	1.5	18
118	Vortex-Induced Vibration of Two Mechanically Coupled Cylinders of Different Diameters in Steady Flow. , $2011, \dots$		2
119	Direct numerical simulation of oscillatory flow around a circular cylinder at low Keulegan–Carpenter number. Journal of Fluid Mechanics, 2011, 666, 77-103.	3.4	50
120	Numerical Investigation of Scale Effects in Modelling Scour Below Offshore Pipelines Under Steady Currents. , $2011, , .$		0
121	Three-dimensional numerical simulation of oscillatory flow around a circular cylinder at right and oblique attacks. Ocean Engineering, 2011, 38, 2056-2069.	4.3	16
122	Numerical simulation of two-degree-of-freedom vortex-induced vibration of a circular cylinder close to a plane boundary. Journal of Fluids and Structures, 2011, 27, 1097-1110.	3.4	132
123	Modelling of multi-bodies in close proximity under water waves—Fluid resonance in narrow gaps. Science China: Physics, Mechanics and Astronomy, 2011, 54, 16-25.	5.1	60
124	Implementation of the moving particle semi-implicit method on GPU. Science China: Physics, Mechanics and Astronomy, 2011, 54, 523-532.	5.1	16
125	Numerical simulation of a partially buried pipeline in a permeable seabed subject to combined oscillatory flow and steady current. Ocean Engineering, 2011, 38, 1225-1236.	4.3	12
126	Euler–Euler two-phase flow simulation of tunnel erosion beneath marine pipelines. Applied Ocean Research, 2011, 33, 137-146.	4.1	39

#	Article	IF	CITATIONS
127	Parallelization of LBM Code Using CUDA Capable GPU Platform for 3D Single and Two-Sided Non-Facing Lid-Driven Cavity Flow. , $2011,\ldots$		3
128	Experimental Study of Erosion Threshold of Reconstituted Sediments., 2011,,.		7
129	Numerical Investigation of Vortex-Induced Vibration (VIV) of a Circular Cylinder in Oscillatory Flow. , $2011,\ldots$		7
130	Direct Numerical Simulation of Effects of Small Angle of Incidence on Honji Instability. , 2011, , .		О
131	Blockage Ratio and Mesh Dependency Study for Lattice Boltzmann Flow around Cylinder. , 2010, , .		1
132	Numerical and Experimental Study of Natural Backfill of Pipeline in a Trench Under Steady Currents. , 2010, , .		0
133	A 2-D Model to Predict Time Development of Scour below Pipelines with Spoiler. AIP Conference Proceedings, 2010, , .	0.4	4
134	Onset of Scour Below Pipeline Under Combined Waves and Current., 2010,,.		1
135	Numerical Investigation of Vortex-Induced Vibration of a Circular Cylinder Close to a Plane Boundary. , 2010, , .		0
136	A parallel three-dimensional scour model to predict flow and scour below a submarine pipeline. Open Physics, 2010, 8, 604-619.	1.7	3
137	Numerical investigation of fluid resonance in two narrow gaps of three identical rectangular structures. Applied Ocean Research, 2010, 32, 177-190.	4.1	79
138	Experimental and numerical investigation of local scour around a submerged vertical circular cylinder in steady currents. Coastal Engineering, 2010, 57, 709-721.	4.0	170
139	Performance investigation of 2D lattice Boltzmann simulation of forces on a circular cylinder. Transactions of Tianjin University, 2010, 16, 417-423.	6.4	6
140	Finite element analysis of flow control using porous media. Ocean Engineering, 2010, 37, 1357-1366.	4.3	28
141	Numerical investigation of local scour below a vibrating pipeline under steady currents. Coastal Engineering, 2010, 57, 397-406.	4.0	81
142	Numerical simulation and comparison of potential flow and viscous fluid models in near trapping of narrow gaps. Journal of Hydrodynamics, 2010, 22, 120-125.	3.2	28
143	Three-dimensional numerical simulation of flow around a circular cylinder under combined steady and oscillatory flow. Journal of Hydrodynamics, 2010, 22, 144-149.	3.2	8
144	Investigation on Suppression of Vortex-Induced Vibration Using Helical Strakes. , 2010, , .		2

#	Article	IF	Citations
145	Development of 3-D Numerical Wave Tank and Applications on Comb-Type Breakwater., 2010,,.		2
146	Numerical Model for Three-Dimensional Scour below a Pipeline in Steady Currents. , 2010, , .		5
147	Modelling of Flow Around a Square Cylinder of Different Roughness Using a Lattice Boltzmann Model. , 2009, , .		0
148	Experimental Investigation of Local Scour Around a Submerged Vertical Circular Cylinder in Steady Currents. , 2009, , .		0
149	Direct numerical simulation of three-dimensional flow past a yawed circular cylinder of infinite length. Journal of Fluids and Structures, 2009, 25, 831-847.	3.4	133
150	Steady streaming around a circular cylinder in an oscillatory flow. Ocean Engineering, 2009, 36, 1089-1097.	4.3	26
151	A numerical model for onset of scour below offshore pipelines. Coastal Engineering, 2009, 56, 458-466.	4.0	57
152	Three-dimensional scour below offshore pipelines in steady currents. Coastal Engineering, 2009, 56, 577-590.	4.0	73
153	Numerical Modeling of Local Scour below a Piggyback Pipeline in Currents. Journal of Hydraulic Engineering, 2008, 134, 1452-1463.	1.5	54
154	Numerical Modeling of Flow and Hydrodynamic Forces around a Piggyback Pipeline near the Seabed. Journal of Waterway, Port, Coastal and Ocean Engineering, 2007, 133, 286-295.	1.2	34
155	Numerical simulation of solitary wave scattering by a circular cylinder array. Ocean Engineering, 2007, 34, 489-499.	4.3	34
156	A finite volume solution of wave forces on submarine pipelines. Ocean Engineering, 2007, 34, 1955-1964.	4.3	11
157	THREE-DIMENSIONAL NUMERICAL MODEL OF FLOW AND SCOUR AROUND A VERTICAL CYLINDER. , 2007, , .		1
158	A finite element solution of wave forces on a horizontal circular cylinder close to the sea-bed. Journal of Hydrodynamics, 2006, 18, 137-143.	3.2	2
159	Numerical simulation of the oscillatory flow around two cylinders in tandem. Journal of Hydrodynamics, 2006, 18, 189-195.	3.2	0
160	Numerical Modeling of Local Scour Below a Piggyback Pipeline in Currents., 2006,, 25.		0
161	A finite element solution of wave forces on a horizontal circular cylinder close to the sea-bed. Journal of Hydrodynamics, 2006, 18, 139-145.	3.2	6
162	Numerical simulation of the oscillatory flow around two cylinders in tandem. Journal of Hydrodynamics, 2006, 18, 191-197.	3.2	4

#	Article	IF	Citations
163	A semi-analytical solution method for two-dimensional Helmholtz equation. Applied Ocean Research, 2006, 28, 193-207.	4.1	24
164	A modified scaled boundary finite-element method for problems with parallel side-faces. Part II. Application and evaluation. Applied Ocean Research, 2005, 27, 224-234.	4.1	36
165	Numerical study of the Reynolds-number dependence of two-dimensional scour beneath offshore pipelines in steady currents. Ocean Engineering, 2005, 32, 1590-1607.	4.3	28
166	Numerical modeling of flow and scour below a pipeline in currents. Coastal Engineering, 2005, 52, 43-62.	4.0	147
167	Numerical modeling of flow and scour below a pipeline in currents. Coastal Engineering, 2005, 52, 25-42.	4.0	82
168	Numerical simulation of viscous flow past two circular cylinders of different diameters. Applied Ocean Research, 2005, 27, 39-55.	4.1	120
169	A modified scaled boundary finite-element method for problems with parallel side-faces. Part I. Theoretical developments. Applied Ocean Research, 2005, 27, 216-223.	4.1	36
170	Numerical Model for Wave-Induced Scour below a Submarine Pipeline. Journal of Waterway, Port, Coastal and Ocean Engineering, 2005, 131, 193-202.	1.2	77
171	LOCAL SCOUR AROUND A VERTICAL PILE WITH A CAISSON FOUNDATION. , 2004, , .		2
172	THREE DIMENSIONAL SCOUR BELOW OFFSHORE PIPELINES. , 2004, , .		0
173	Potential flow around obstacles using the scaled boundary finite-element method. International Journal for Numerical Methods in Fluids, 2003, 41, 721-741.	1.6	83
174	Modelling of Local Scour Below a Sagging Pipeline. Coastal Engineering Journal, 2003, 45, 189-210.	1.9	21
175	Prediction of Lee-Wake Scouring of Pipelines in Currents. Journal of Waterway, Port, Coastal and Ocean Engineering, 2001, 127, 106-112.	1.2	57
176	Wave-induced seabed instability around a buried pipeline in a poro-elastic seabed. Ocean Engineering, 2000, 27, 127-146.	4.3	30
177	Numerical Model for Local Scour under Offshore Pipelines. Journal of Hydraulic Engineering, 1999, 125, 400-406.	1.5	89
178	A simplified marker and cell method for unsteady flows on non-staggered grids. International Journal for Numerical Methods in Fluids, 1995, 21, 15-34.	1.6	68