Virginija Cvirkaite-Krupovic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9594478/publications.pdf

Version: 2024-02-01

567281 677142 22 702 15 22 citations h-index g-index papers 26 26 26 839 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Viruses of archaea: Structural, functional, environmental and evolutionary genomics. Virus Research, 2018, 244, 181-193.	2.2	175
2	Extracellular membrane vesicles harbouring viral genomes. Environmental Microbiology, 2014, 16, 1167-1175.	3.8	70
3	Spindle-shaped viruses infect marine ammonia-oxidizing thaumarchaea. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 15645-15650.	7.1	49
4	An extensively glycosylated archaeal pilus survives extreme conditions. Nature Microbiology, 2019, 4, 1401-1410.	13.3	46
5	Virophages or satellite viruses?. Nature Reviews Microbiology, 2011, 9, 762-763.	28.6	41
6	Identification and functional analysis of the <i>Rz/Rz1</i> â€like accessory lysis genes in the membraneâ€containing bacteriophage PRD1. Molecular Microbiology, 2008, 68, 492-503.	2.5	36
7	Archaeal extracellular vesicles are produced in an ESCRT-dependent manner and promote gene transfer and nutrient cycling in extreme environments. ISME Journal, 2021, 15, 2892-2905.	9.8	36
8	New virus isolates from Italian hydrothermal environments underscore the biogeographic pattern in archaeal virus communities. ISME Journal, 2020, 14, 1821-1833.	9.8	29
9	Virus-induced cell gigantism and asymmetric cell division in archaea. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	29
10	Calcium ion-dependent entry of the membrane-containing bacteriophage PM2 into its Pseudoalteromonas host. Virology, 2010, 405, 120-128.	2.4	24
11	Bacterial Viruses Subcommittee and Archaeal Viruses Subcommittee of the ICTV: update of taxonomy changes in 2021. Archives of Virology, 2021, 166, 3239-3244.	2.1	24
12	Spindle-shaped archaeal viruses evolved from rod-shaped ancestors to package a larger genome. Cell, 2022, 185, 1297-1307.e11.	28.9	24
13	DeepTracer-ID: De novo protein identification from cryo-EM maps. Biophysical Journal, 2022, 121, 2840-2848.	0.5	20
14	On-line monitoring of changes in host cell physiology during the one-step growth cycle of Bacillus phage Bam35. Journal of Microbiological Methods, 2007, 69, 174-179.	1.6	19
15	Evolution of an archaeal virus nucleocapsid protein from the CRISPR-associated Cas4 nuclease. Biology Direct, 2015, 10, 65.	4.6	16
16	Archaeal bundling pili of <i>Pyrobaculum calidifontis</i> reveal similarities between archaeal and bacterial biofilms. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	13
17	Towards a more comprehensive classification of satellite viruses. Nature Reviews Microbiology, 2012, 10, 234-234.	28.6	12
18	Extracellular membrane vesicles and nanotubes in Archaea. MicroLife, 2021, 2, .	2.1	11

#	Article	IF	CITATIONS
19	Virus Evolution toward Limited Dependence on Nonessential Functions of the Host: the Case of Bacteriophage SPP1. Journal of Virology, 2015, 89, 2875-2883.	3.4	8
20	Sputnik and Mavirus: not more than satellite viruses. Nature Reviews Microbiology, 2012, 10, 78-78.	28.6	6
21	New insights into the diversity and evolution of the archaeal mobilome from three complete genomes of <i>Saccharolobus shibatae</i> . Environmental Microbiology, 2021, 23, 4612-4630.	3.8	5
22	Protein A33 responsible for antibody-resistant spread of Vaccinia virus is homologous to C-type lectin-like proteins. Virus Research, 2010, 151, 97-101.	2.2	2