
Berrien Moore Iii

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9591077/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The simultaneous use of tracers for ocean circulation studies. Tellus, Series B: Chemical and Physical Meteorology, 2022, 35, 206.	1.6	30
2	Large loss and rapid recovery of vegetation cover and aboveground biomass over forest areas in Australia during 2019–2020. Remote Sensing of Environment, 2022, 278, 113087.	11.0	26
3	Small anomalies in dry-season greenness and chlorophyll fluorescence for Amazon moist tropical forests during El Niño and La Niña. Remote Sensing of Environment, 2021, 253, 112196.	11.0	21
4	Carbon loss from forest degradation exceeds that from deforestation in the Brazilian Amazon. Nature Climate Change, 2021, 11, 442-448.	18.8	166
5	Implementation of Improved Parameterization of Terrestrial Flux in WRFâ€VPRM Improves the Simulation of Nighttime CO ₂ Peaks and a Daytime CO ₂ Band Ahead of a Cold Front. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD034362.	3.3	15
6	Globalâ€Scale Consistency of Spaceborne Vegetation Indices, Chlorophyll Fluorescence, and Photosynthesis. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2020JG006136.	3.0	21
7	Impacts of juniper woody plant encroachment into grasslands on local climate. Agricultural and Forest Meteorology, 2021, 307, 108508.	4.8	21
8	Dynamical Downscaling of CO ₂ in 2016 Over the Contiguous United States Using WRFâ€VPRM, a Weatherâ€Biosphereâ€Onlineâ€Coupled Model. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS001875.	3.8	21
9	Improved estimates of forest cover and loss in the Brazilian Amazon in 2000–2017. Nature Sustainability, 2019, 2, 764-772.	23.7	71
10	A scanning strategy optimized for signal-to-noise ratio for the Geostationary Carbon Cycle Observatory (GeoCarb) instrument. Atmospheric Measurement Techniques, 2019, 12, 3317-3334.	3.1	7
11	TROPOMI reveals dry-season increase of solar-induced chlorophyll fluorescence in the Amazon forest. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 22393-22398.	7.1	78
12	Current Status and Future Challenges of Weather Radar Polarimetry: Bridging the Gap between Radar Meteorology/Hydrology/Engineering and Numerical Weather Prediction. Advances in Atmospheric Sciences, 2019, 36, 571-588.	4.3	46
13	Assessment of Physical Water Scarcity in Africa Using GRACE and TRMM Satellite Data. Remote Sensing, 2019, 11, 904.	4.0	30
14	On the Ability of Spaceâ€Based Passive and Active Remote Sensing Observations of CO ₂ to Detect Flux Perturbations to the Carbon Cycle. Journal of Geophysical Research D: Atmospheres, 2018, 123, 1460-1477.	3.3	25
15	Observing carbon cycle–climate feedbacks from space. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 7860-7868.	7.1	53
16	Annual dynamics of forest areas in South America during 2007–2010 at 50-m spatial resolution. Remote Sensing of Environment, 2017, 201, 73-87.	11.0	47
17	Spatiotemporal patterns of paddy rice croplands in China and India from 2000 to 2015. Science of the Total Environment, 2017, 579, 82-92.	8.0	127
18	Consistency between sun-induced chlorophyll fluorescence and gross primary production of vegetation in North America. Remote Sensing of Environment, 2016, 183, 154-169.	11.0	180

Berrien Moore III

#	Article	IF	CITATIONS
19	Mapping paddy rice planting area in northeastern Asia with Landsat 8 images, phenology-based algorithm and Google Earth Engine. Remote Sensing of Environment, 2016, 185, 142-154.	11.0	524
20	Tracking the dynamics of paddy rice planting area in 1986–2010 through time series Landsat images and phenology-based algorithms. Remote Sensing of Environment, 2015, 160, 99-113.	11.0	257
21	Comparison of four EVI-based models for estimating gross primary production of maize and soybean croplands and tallgrass prairie under severe drought. Remote Sensing of Environment, 2015, 162, 154-168.	11.0	93
22	Forest cover maps of China in 2010 from multiple approaches and data sources: PALSAR, Landsat, MODIS, FRA, and NFI. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 109, 1-16.	11.1	70
23	A 50-m Forest Cover Map in Southeast Asia from ALOS/PALSAR and Its Application on Forest Fragmentation Assessment. PLoS ONE, 2014, 9, e85801.	2.5	46
24	Monitoring and Prediction of the Earth's Climate: A Future Perspective. Journal of Climate, 2006, 19, 5001-5008.	3.2	27
25	Mapping paddy rice agriculture in South and Southeast Asia using multi-temporal MODIS images. Remote Sensing of Environment, 2006, 100, 95-113.	11.0	667
26	Detecting leaf phenology of seasonally moist tropical forests in South America with multi-temporal MODIS images. Remote Sensing of Environment, 2006, 103, 465-473.	11.0	179
27	Characterization of seasonal variation of forest canopy in a temperate deciduous broadleaf forest, using daily MODIS data. Remote Sensing of Environment, 2006, 105, 189-203.	11.0	69
28	Satellite-based modeling of gross primary production in a seasonally moist tropical evergreen forest. Remote Sensing of Environment, 2005, 94, 105-122.	11.0	242
29	Mapping paddy rice agriculture in southern China using multi-temporal MODIS images. Remote Sensing of Environment, 2005, 95, 480-492.	11.0	814
30	Field work and statistical analyses for enhanced interpretation of satellite fire data. Remote Sensing of Environment, 2005, 96, 212-227.	11.0	17
31	Estimating light absorption by chlorophyll, leaf and canopy in a deciduous broadleaf forest using MODIS data and a radiative transfer model. Remote Sensing of Environment, 2005, 99, 357-371.	11.0	189
32	Satellite-based modeling of gross primary production in an evergreen needleleaf forest. Remote Sensing of Environment, 2004, 89, 519-534.	11.0	682
33	IKONOS imagery for the Large Scale Biosphere–Atmosphere Experiment in Amazonia (LBA). Remote Sensing of Environment, 2003, 88, 111-127.	11.0	44
34	Sensitivity of vegetation indices to atmospheric aerosols: continental-scale observations in Northern Asia. Remote Sensing of Environment, 2003, 84, 385-392.	11.0	153
35	Projecting future fire activity in Amazonia. Global Change Biology, 2003, 9, 656-669.	9.5	77
36	Regional carbon dynamics in monsoon Asia and its implications for the global carbon cycle. Global and Planetary Change, 2003, 37, 201-201.	3.5	83

Berrien Moore III

#	Article	IF	CITATIONS
37	A simulation model linking crop growth and soil biogeochemistry for sustainable agriculture. Ecological Modelling, 2002, 151, 75-108.	2.5	173
38	Linking remote-sensing estimates of land cover and census statistics on land use to produce maps of land use of the conterminous United States. Global Biogeochemical Cycles, 2001, 15, 673-685.	4.9	47
39	ENVIRONMENT AND DEVELOPMENT: Sustainability Science. Science, 2001, 292, 641-642.	12.6	2,169
40	Title is missing!. Nutrient Cycling in Agroecosystems, 2001, 60, 159-175.	2.2	165
41	Sensitivity of the Himalayan Hydrology to Land-Use and Climatic Changes. Climatic Change, 2000, 47, 117-139.	3.6	60
42	Anthropogenic, Climatic, and Hydrologic Trends in the Kosi Basin, Himalaya. Climatic Change, 2000, 47, 141-165.	3.6	102
43	Parameters for global ecosystem models. Nature, 1999, 399, 536-536.	27.8	6
44	Effect of interannual climate variability on carbon storage in Amazonian ecosystems. Nature, 1998, 396, 664-667.	27.8	419
45	Equilibrium responses of global net primary production and carbon storage to doubled atmospheric carbon dioxide: Sensitivity to changes in vegetation nitrogen concentration. Global Biogeochemical Cycles, 1997, 11, 173-189.	4.9	174
46	Introduction to Special Section: Global Analysis, Interpretation and Modelling-Toward the Integration of Global Biogeochemical Systems. Global Biogeochemical Cycles, 1996, 10, 675-675.	4.9	0
47	The lifetime of excess atmospheric carbon dioxide. Global Biogeochemical Cycles, 1994, 8, 23-38.	4.9	55
48	Global climate change and terrestrial net primary production. Nature, 1993, 363, 234-240.	27.8	1,719
49	Modeling basin-scale hydrology in support of physical climate and global biogeochemical studies: An example using the Zambezi River. Surveys in Geophysics, 1991, 12, 271-311.	4.6	61
50	Transport and carbon exchanges in Red Sea Inverse Methodology. Global Biogeochemical Cycles, 1989, 3, 1-26.	4.9	14
51	Continental scale models of water balance and fluvial transport: An application to South America. Global Biogeochemical Cycles, 1989, 3, 241-265.	4.9	334
52	CLOSED REGENERATIVE LIFE SUPPORT SYSTEMS FOR SPACE TRAVEL: THEIR DEVELOPMENT POSES FUNDAMENTAL QUESTIONS FOR ECOLOGICAL SCIENCE. , 1979, 17, 3-12.		4
53	Title is missing!. Indiana University Mathematics Journal, 1975, 24, 777.	0.9	8
54	A factorable weight with zero Szegö infimum. Proceedings of the American Mathematical Society, 1972, 35, 301-302.	0.8	1

#	Article	IF	CITATIONS
55	The Szegő infimum. Proceedings of the American Mathematical Society, 1971, 29, 55-55.	0.8	4