
Santosh Kumar Upadhyay

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9590089/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	RNA-Guided Genome Editing for Target Gene Mutations in Wheat. G3: Genes, Genomes, Genetics, 2013, 3, 2233-2238.	1.8	385
2	RNA interference for the control of whiteflies (Bemisia tabaci) by oral route. Journal of Biosciences, 2011, 36, 153-161.	1.1	204
3	Enhanced Whitefly Resistance in Transgenic Tobacco Plants Expressing Double Stranded RNA of v-ATPase A Gene. PLoS ONE, 2014, 9, e87235.	2.5	163
4	The potential of green synthesized zinc oxide nanoparticles as nutrient source for plant growth. Journal of Cleaner Production, 2019, 214, 1061-1070.	9.3	161
5	Survey of High Throughput RNA-Seq Data Reveals Potential Roles for IncRNAs during Development and Stress Response in Bread Wheat. Frontiers in Plant Science, 2017, 8, 1019.	3.6	111
6	Expression of an insecticidal fern protein in cotton protects against whitefly. Nature Biotechnology, 2016, 34, 1046-1051.	17.5	99
7	Functional analysis of sucrose phosphate synthase (SPS) and sucrose synthase (SS) in sugarcane (<i>Saccharum</i>) cultivars. Plant Biology, 2011, 13, 325-332.	3.8	97
8	Molecular Characterization of Vitellogenin and Vitellogenin Receptor of Bemisia tabaci. PLoS ONE, 2016, 11, e0155306.	2.5	79
9	Molecular Characterization and Global Expression Analysis of Lectin Receptor Kinases in Bread Wheat (Triticum aestivum). PLoS ONE, 2016, 11, e0153925.	2.5	73
10	Genomic Dissection and Expression Profiling Revealed Functional Divergence in Triticum aestivum Leucine Rich Repeat Receptor Like Kinases (TaLRRKs). Frontiers in Plant Science, 2016, 7, 1374.	3.6	68
11	Enhanced Methanol Production in Plants Provides Broad Spectrum Insect Resistance. PLoS ONE, 2013, 8, e79664.	2.5	58
12	Molecular characterization of ascorbate peroxidase (APX) and APX-related (APX-R) genes in Triticum aestivum L. Genomics, 2020, 112, 4208-4223.	2.9	56
13	Molecular characterization revealed the role of catalases under abiotic and arsenic stress in bread wheat (Triticum aestivum L.). Journal of Hazardous Materials, 2021, 403, 123585.	12.4	56
14	In vitro degradation of fluoranthene by bacteria isolated from petroleum sludge. Bioresource Technology, 2011, 102, 3709-3715.	9.6	53
15	Present Scenario of Long Non-Coding RNAs in Plants. Non-coding RNA, 2017, 3, 16.	2.6	51
16	Bacterial degradation of pyrene in minimal salt medium mediated by catechol dioxygenases: Enzyme purification and molecular size determination. Bioresource Technology, 2013, 133, 293-300.	9.6	50
17	Genomic dissection and transcriptional profiling of Cysteine-rich receptor-like kinases in five cereals and functional characterization of TaCRK68-A. International Journal of Biological Macromolecules, 2019, 134, 316-329.	7.5	50
18	Genome-wide characterization revealed role of NBS-LRR genes during powdery mildew infection in Vitis vinifera. Genomics, 2020, 112, 312-322.	2.9	50

#	Article	IF	CITATIONS
19	Identification, characterization and expression profiling of cation-proton antiporter superfamily in Triticum aestivum L. and functional analysis of TaNHX4-B. Genomics, 2020, 112, 356-370.	2.9	45

Exploration of glutathione reductase for abiotic stress response in bread wheat (Triticum aestivum) Tj ETQq000 rgBT /Overlock 10 Tf 50 44

21	Ca2+/Cation Antiporters (CaCA): Identification, Characterization and Expression Profiling in Bread Wheat (Triticum aestivum L.). Frontiers in Plant Science, 2016, 7, 1775.	3.6	43
22	SSFinder: High Throughput CRISPR-Cas Target Sites Prediction Tool. BioMed Research International, 2014, 2014, 1-4.	1.9	42
23	Superoxide dismutases in bread wheat (Triticum aestivum L.): Comprehensive characterization and expression analysis during development and, biotic and abiotic stresses. Agri Gene, 2017, 6, 1-13.	1.9	41
24	Gene architecture and expression analyses provide insights into the role of glutathione peroxidases (GPXs) in bread wheat (Triticum aestivum L.). Journal of Plant Physiology, 2018, 223, 19-31.	3.5	39
25	Molecular characterization and differential expression suggested diverse functions of P-type II Ca2+ATPases in Triticum aestivum L. BMC Genomics, 2018, 19, 389.	2.8	39
26	Reference genes validation in Phenacoccus solenopsis under various biotic and abiotic stress conditions. Scientific Reports, 2017, 7, 13520.	3.3	37
27	Thaumatin-like protein kinases: Molecular characterization and transcriptional profiling in five cereal crops. Plant Science, 2020, 290, 110317.	3.6	37
28	siRNA Machinery in Whitefly (Bemisia tabaci). PLoS ONE, 2013, 8, e83692.	2.5	36
29	Long Non-coding RNAs Coordinate Developmental Transitions and Other Key Biological Processes in Grapevine. Scientific Reports, 2019, 9, 3552.	3.3	31
30	SUMO fusion facilitates expression and purification of garlic leaf lectin but modifies some of its properties. Journal of Biotechnology, 2010, 146, 1-8.	3.8	28
31	Genome-wide identification and characterization of LRR-RLKs reveal functional conservation of the SIF subfamily in cotton (Gossypium hirsutum). BMC Plant Biology, 2018, 18, 185.	3.6	28
32	Whitefly Genome Expression Reveals Host-Symbiont Interaction in Amino Acid Biosynthesis. PLoS ONE, 2015, 10, e0126751.	2.5	28
33	LysM domain-containing proteins modulate stress response and signalling in Triticum aestivum L Environmental and Experimental Botany, 2021, 189, 104558.	4.2	27
34	Compendium of Plant-Specific CRISPR Vectors and Their Technical Advantages. Life, 2021, 11, 1021.	2.4	26
35	Interaction of <i>Allium sativum</i> leaf agglutinin with midgut brush border membrane vesicles proteins and its stability in <i>Helicoverpa armigera</i> . Proteomics, 2010, 10, 4431-4440.	2.2	24
36	Genome-wide characterization and expression analysis suggested diverse functions of the mechanosensitive channel of small conductance-like (MSL) genes in cereal crops. Scientific Reports, 2020, 10, 16583.	3.3	24

#	Article	IF	CITATIONS
37	Efficient Production of Gossypol from Hairy Root Cultures of Cotton (Gossypium hirsutum L.). Current Pharmaceutical Biotechnology, 2009, 10, 691-700.	1.6	23
38	Role of alkaline phosphatase in insecticidal action of Cry1Ac against Helicoverpa armigera larvae. Biotechnology Letters, 2011, 33, 2027-2036.	2.2	23
39	Transcript expression and soluble acid invertase activity during sucrose accumulation in sugarcane. Acta Physiologiae Plantarum, 2011, 33, 1749-1757.	2.1	23
40	Receptors of Garlic (Allium sativum) Lectins and Their Role in Insecticidal Action. Protein Journal, 2012, 31, 439-446.	1.6	23
41	Characterization and Expression Analysis of Phytoene Synthase from Bread Wheat (Triticum aestivum) Tj ETQq1 I	1 0.78431	4 rgBT /Ove
42	Molecular Characterization Revealed the Role of Thaumatin-Like Proteins of Bread Wheat in Stress Response. Frontiers in Plant Science, 2021, 12, 807448.	3.6	23
43	Glutathione Peroxidases in Plants: Innumerable Role in Abiotic Stress Tolerance and Plant Development. Journal of Plant Growth Regulation, 2023, 42, 598-613.	5.1	23
44	Pectin Methylesterase of <i><i>Datura</i></i> species, purification, and characterization from <i><i>Datura stramonium</i></i> and its application. Plant Signaling and Behavior, 2013, 8, e25681.	2.4	21
45	Transcriptome sequencing of a thalloid bryophyte; Dumortiera hirsuta (Sw) Nees: assembly, annotation and marker discovery. Scientific Reports, 2015, 5, 15350.	3.3	21
46	Investigation of long non-coding RNAs as regulatory players of grapevine response to powdery and downy mildew infection. BMC Plant Biology, 2021, 21, 265.	3.6	21
47	Characterization of APX and APX-R gene family in Brassica juncea and B. rapa for tolerance against abiotic stresses. Plant Cell Reports, 2022, 41, 571-592.	5.6	18
48	Role of Superoxide Dismutases (SODs) in Stress Tolerance in Plants. Energy, Environment, and Sustainability, 2019, , 51-77.	1.0	18
49	Genome-wide characterization and expression and co-expression analysis suggested diverse functions of WOX genes in bread wheat. Heliyon, 2020, 6, e05762.	3.2	18
50	Long Non-Coding RNAs as Emerging Regulators of Pathogen Response in Plants. Non-coding RNA, 2022, 8, 4.	2.6	18
51	Engineering in Hairy Roots Using CRISPR/Cas9-Mediated Editing. , 2018, , 329-342.		17
52	The current progress of CRISPR/Cas9 development in plants. , 2020, , 123-129.		16
53	Nanotechnology: A New Tool for Biofuel Production. Biofuel and Biorefinery Technologies, 2018, , 17-28.	0.3	15
54	De novo characterization of Phenacoccus solenopsis transcriptome and analysis of gene expression profiling during development and hormone biosynthesis. Scientific Reports, 2018, 8, 7573.	3.3	15

7

#	Article	IF	CITATIONS
55	Investigation of Roles of TaTALE Genes during Development and Stress Response in Bread Wheat. Plants, 2022, 11, 587.	3.5	14
56	Molecular Characterization, Evolutionary Analysis, and Expression Profiling of BOR Genes in Important Cereals. Plants, 2022, 11, 911.	3.5	14
57	Purification and Characterization of a Lectin with High Hemagglutination Property Isolated from Allium altaicum. Protein Journal, 2011, 30, 374-383.	1.6	13
58	A highly stable Cu/Zn superoxide dismutase from Withania somnifera plant: gene cloning, expression and characterization of the recombinant protein. Biotechnology Letters, 2011, 33, 2057-2063.	2.2	13
59	Impact of Food Additives on Mitotic Chromosomes of <i>Vicia faba</i> L Caryologia, 2007, 60, 309-314.	0.3	12
60	Interaction of Salivary and Midgut Proteins of Helicoverpa armigera with Soybean Trypsin Inhibitor. Protein Journal, 2012, 31, 259-264.	1.6	12
61	Biochemical characterization and spatio-temporal expression of myo-inositol oxygenase (MIOX) from wheat (Triticum aestivum L.). Plant Gene, 2015, 4, 10-19.	2.3	12
62	Compatibility of garlic (Allium sativum L.) leaf agglutinin and Cry1Ac δ-endotoxin for gene pyramiding. Applied Microbiology and Biotechnology, 2012, 93, 2365-2375.	3.6	11
63	Cytological effect of heavy metals on root meristem cells of <i>Vicia faba</i> L Toxicological and Environmental Chemistry, 2010, 92, 89-96.	1.2	10
64	Food Additive. , 2012, , .		9
65	Molecular Approaches in Plant Biology and Environmental Challenges. Energy, Environment, and Sustainability, 2019, , .	1.0	9
66	Insight into the Roles of Proline-Rich Extensin-like Receptor Protein Kinases of Bread Wheat (Triticum) Tj ETQq0 0	0.rgBT /O	verlock 10 T
67	EF-hand domain-containing proteins in Triticum aestivum: Insight into their roles in stress response and signalling. South African Journal of Botany, 2022, 149, 663-681.	2.5	9
68	Identification and characterization of WUSCHEL-related homeobox (WOX) gene family in economically important orchid species Phalaenopsis equestris and Dendrobium catenatum. Plant Gene, 2018, 14, 37-45.	2.3	7
69	Vitis vinifera (grapevine) lncRNAs are potential regulators of response to necrotrophic fungus, Botrytis cinerea infection. Physiological and Molecular Plant Pathology, 2020, 112, 101553.	2.5	7

Enzymes and their production strategies. , 2020, , 31-48.

71	RNAi â€based gene silencing in Phenacoccus solenopsis and its validation by in planta expression of a doubleâ€stranded RNA. Pest Management Science, 2021, 77, 1796-1805.	3.4	7
72	Receptor-Like Kinases and Environmental Stress in Plants. Energy, Environment, and Sustainability, 2019, , 79-102.	1.0	7

#	Article	IF	CITATIONS
73	EF-hand domain-containing proteins: diversity and role in plants. , 2022, , 185-203.		6
74	Biodegradation of bisphenol A using psychrotolerant bacterial strain Pseudomonas palleroniana GBPI_508. Archives of Microbiology, 2022, 204, 272.	2.2	6
75	RNAi $\hat{a} \in$ " Implications in Entomological Research and Pest Control. , 0, , .		5
76	Role of Next-Generation RNA-Seq Data in Discovery and Characterization of Long Non-Coding RNA in Plants. , 0, , .		5
77	Mechanism of iron uptake and homeostasis in plants. , 2022, , 147-165.		5
78	Cation transporters in plants: an overview. , 2022, , 1-28.		5
79	Genome wide characterization of the SERK/SERL gene family in Phalaenopsis equestris, Dendrobium catenatum and Apostasia shenzhenica (Orchidaceae). Computational Biology and Chemistry, 2020, 85, 107210.	2.3	3
80	An introduction to the calcium transport elements in plants. , 2021, , 1-18.		3
81	Mechanosensitive ion channels in plants. , 2021, , 267-279.		3
82	Molecular Approaches in Plant Biology and Environmental Challenges. Energy, Environment, and Sustainability, 2019, , 1-5.	1.0	3
83	Mode of Communication Between Plants During Environmental Stress. Energy, Environment, and Sustainability, 2019, , 127-147.	1.0	3
84	An overview of annexins in plants. , 2021, , 171-191.		2
85	An overview of long noncoding RNA in plants. , 2021, , 1-14.		2
86	Revisiting plant response to fungal stress in view of long noncoding RNAs. , 2021, , 293-311.		1
87	Role of Prokayotic P-Type ATPases. International Journal of Cell Science & Molecular Biology, 2017, 3, .	0.1	1
88	Tracing the footprints of the ABCDE model of flowering in Phalaenopsis equestris (Schauer) Rchb.f. (Orchidaceae). Journal of Plant Biotechnology, 2019, 46, 255-273.	0.4	1
89	A glimpse of boron transport in plants. , 2022, , 281-306.		1
90	Na+/H+ antiporter (NHX) and salt stress tolerance. , 2022, , 99-113.		1

Na+/H+ antiporter (NHX) and salt stress tolerance. , 2022, , 99-113. 90

#	Article	IF	CITATIONS
91	Molecules and Methods for the Control of Biotic Stress Especially the Insect Pests $\hat{a} \in "$ Present Scenario and Future Perspective. , 0, , .		0
92	Role of IncRNAs in wheat and its wild relatives. , 2021, , 49-62.		0
93	Applications of calcium transport elements in plant improvement. , 2021, , 427-445.		0
94	Discovery and history of long noncoding RNAs in plants. , 2021, , 15-33.		0
95	Molecular characterization of Nâ€methylâ€dâ€aspartate receptor from Bemisia tabaci. Insect Molecular Biology, 2021, 30, 231-240.	2.0	0
96	Applications of IncRNAs in plant improvement. , 2021, , 339-353.		0
97	Agricultural applications of engineered microbes. , 2022, , 363-375.		ο