Thomas Becker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9589920/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Aroma profile of a gluten-free barley malt beer crafted to remove gluten using a barley malt extract with high peptidase activity. European Food Research and Technology, 2023, 249, 23-32.	3.3	2
2	Enzymes from Cereal and <i>Fusarium</i> Metabolism Involved in the Malting Process – A Review. Journal of the American Society of Brewing Chemists, 2022, 80, 1-16.	1.1	5
3	Hardness targeted design and modulation of food textures in the elastic-regime using 3D printing of closed-cell foams in point lattice systems. Journal of Food Engineering, 2022, 320, 110942.	5.2	9
4	Ensembleâ€based adaptive soft sensor for faultâ€ŧolerant biomass monitoring. Engineering in Life Sciences, 2022, 22, 229-241.	3.6	3
5	Generation and evaluation of input values for computational analysis of transport processes within tissue cultures. Engineering in Life Sciences, 2022, 22, 681-698.	3.6	0
6	Micro-Scale Shear Kneading—Gluten Network Development under Multiple Stress–Relaxation Steps and Evaluation via Multiwave Rheology. Polymers, 2022, 14, 846.	4.5	7
7	Gluten–starch interface characteristics and wheat dough rheology—Insights from hybrid artificial systems. Journal of Food Science, 2022, 87, 1375-1385.	3.1	4
8	Screening of Mycotoxigenic Fungi in Barley and Barley Malt (Hordeum vulgare L.) Using Real-Time PCR—A Comparison between Molecular Diagnostic and Culture Technique. Foods, 2022, 11, 1149.	4.3	6
9	Evaluation of microtiter plate as a high-throughput screening platform for beer fermentation. European Food Research and Technology, 2022, 248, 1831-1846.	3.3	1
10	Pulsed forward flushes as a novel method for cleaning spent grainsâ€loaded filter cloth. International Journal of Food Science and Technology, 2022, 57, 4575-4585.	2.7	1
11	Combined Longitudinal and Surface Acoustic Wave Analysis for Determining Small Filling Levels in Curved Steel Containers. Sensors, 2022, 22, 3476.	3.8	1
12	Relation between polymer transitions and the extensional viscosity of dough systems during thermal stabilization assessed by lubricated squeezing flow. Food Chemistry, 2022, 389, 133048.	8.2	3
13	Contact area determination between structured surfaces and viscoelastic food materials. LWT - Food Science and Technology, 2022, 164, 113664.	5.2	1
14	Investigations on Backflush Cleaning of Spent Grain-Contaminated Filter Cloths Using Continuous and Pulsed Jets. Foods, 2022, 11, 1757.	4.3	1
15	Chemometric modeling of palate fullness in lager beers. Food Chemistry, 2021, 342, 128253.	8.2	15
16	Optical method for porosity determination to prove the stamp effect in filter cakes. Journal of Food Engineering, 2021, 293, 110405.	5.2	3
17	Impact of Storing Condition on Staling and Microbial Spoilage Behavior of Bread and Their Contribution to Prevent Food Waste. Foods, 2021, 10, 76.	4.3	18
18	Fundamental characterization of wheat gluten. European Food Research and Technology, 2021, 247, 985-997.	3.3	29

#	Article	IF	CITATIONS
19	Surface Energy of Food Contact Materials and Its Relation to Wheat Dough Adhesion. Food and Bioprocess Technology, 2021, 14, 1142-1154.	4.7	13
20	Influence of 3-DG as a Key Precursor Compound on Aging of Lager Beers. Journal of Agricultural and Food Chemistry, 2021, 69, 3732-3740.	5.2	12
21	Thermally induced gluten modification observed with rheology and spectroscopies. International Journal of Biological Macromolecules, 2021, 173, 26-33.	7.5	14
22	Sensory and Olfactometry Chemometrics as Valuable Tools for Assessing Hops' Aroma Impact on Dry-Hopped Beers: A Study with Wild Portuguese Genotypes. Foods, 2021, 10, 1397.	4.3	4
23	Understanding the Impact of Industrial Stress Conditions on Replicative Aging in Saccharomyces cerevisiae. Frontiers in Fungal Biology, 2021, 2, .	2.0	12
24	Texture design of gluten-free bread by mixing under controlled headspace atmosphere. European Food Research and Technology, 2021, 247, 2333-2343.	3.3	4
25	Gelatinization or Pasting? The Impact of Different Temperature Levels on the Saccharification Efficiency of Barley Malt Starch. Foods, 2021, 10, 1733.	4.3	10
26	Controlling glass bead surface functionality - Impact on network formation in natural edible polymer systems. Composites Science and Technology, 2021, 211, 108864.	7.8	4
27	Sensory design in food 3D printing – Structuring, texture modulation, taste localization, and thermal stabilization. Innovative Food Science and Emerging Technologies, 2021, 72, 102743.	5.6	30
28	Formation and degradation of 3â€deoxyglucosone as a key intermediate for ageing indicators during wort boiling. Journal of the Institute of Brewing, 2021, 127, 358-366.	2.3	5
29	Challenges in the Development of Soft Sensors for Bioprocesses: A Critical Review. Frontiers in Bioengineering and Biotechnology, 2021, 9, 722202.	4.1	26
30	Aroma and color development during the production of specialty malts: A review. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 4816-4840.	11.7	16
31	A Strong-Form Off-Lattice Boltzmann Method for Irregular Point Clouds. Symmetry, 2021, 13, 1802.	2.2	2
32	Compression Mechanism in Multilayered Filter Cakes. Chemical Engineering and Technology, 2021, 44, 1900-1907.	1.5	2
33	The Influence of Proteolytic Malt Modification on the Aging Potential of Final Wort. Foods, 2021, 10, 2320.	4.3	6
34	Influence of particle size uniformity on the filter cake resistance of physically and chemically modified fine particles. Separation and Purification Technology, 2021, 272, 118966.	7.9	8
35	Impact of the particle-polymer interface on small- and large-scale deformation response in protein- and carbohydrate-based food matrices. International Journal of Biological Macromolecules, 2021, 191, 51-59.	7.5	2
36	Recombinant protein linker production as a basis for non-invasive determination of single-cell yeast age in heterogeneous yeast populations. RSC Advances, 2021, 11, 31923-31932.	3.6	4

#	Article	IF	CITATIONS
37	Key constituents, flavour profiles and specific sensory evaluation of wheat style nonâ€alcoholic beers depending on their production method. Journal of the Institute of Brewing, 2021, 127, 262-272.	2.3	9
38	A Comprehensive Evaluation of Flavor Instability of Beer (Part 1): Influence of Release of Bound State Aldehydes. Foods, 2021, 10, 2432.	4.3	10
39	The Self-Enforcing Starch–Gluten System—Strain–Dependent Effects of Yeast Metabolites on the Polymeric Matrix. Polymers, 2021, 13, 30.	4.5	13
40	A Comprehensive Evaluation of Flavor Instability of Beer (Part 2): The Influence of De Novo Formation of Aging Aldehydes. Foods, 2021, 10, 2668.	4.3	12
41	Fibres of milling and fruit processing by-products in gluten-free bread making: A review of hydration properties, dough formation and quality-improving strategies. Food Chemistry, 2020, 306, 125451.	8.2	47
42	Online sensor validation in sensor networks for bioprocess monitoring using swarm intelligence. Analytical and Bioanalytical Chemistry, 2020, 412, 2165-2175.	3.7	9
43	Prediction of Fruity-Citrus Intensity of Beers Dry Hopped with Mandarina Bavaria Based on the Content of Selected Volatile Compounds. Journal of Agricultural and Food Chemistry, 2020, 68, 2155-2163.	5.2	6
44	The Challenge of Cleaning Woven Filter Cloth in the Beverage Industry—Wash Jets as an Appropriate Solution. Food Engineering Reviews, 2020, 12, 520-545.	5.9	6
45	3D printing and additive manufacturing of cereal-based materials: Quality analysis of starch-based systems using a camera-based morphological approach. Innovative Food Science and Emerging Technologies, 2020, 63, 102384.	5.6	39
46	Flavor stability assessment of lager beer: what we can learn by comparing established methods. European Food Research and Technology, 2020, 246, 1105-1118.	3.3	10
47	Influence of malt modification and the corresponding macromolecular profile on palate fullness in cereal-based beverages. European Food Research and Technology, 2020, 246, 1219-1229.	3.3	7
48	Evaluation of baking performance by means of mid-infrared imaging. Innovative Food Science and Emerging Technologies, 2020, 61, 102327.	5.6	7
49	Characterization of the macromolecular and sensory profile of non-alcoholic beers produced with various methods. Food Research International, 2019, 116, 508-517.	6.2	45
50	Technological influence on sensory stability and antioxidant activity of beers measured by ORAC and FRAP. Journal of the Science of Food and Agriculture, 2019, 99, 6628-6637.	3.5	19
51	A review: Reverse approach to analyze the impact of starch modification on the inflation and gas holding properties of wheat-based matrices. Trends in Food Science and Technology, 2019, 91, 231-239.	15.1	6
52	Characterizing the impact of starch and gluten-induced alterations on gelatinization behavior of physically modified model dough. Food Chemistry, 2019, 301, 125276.	8.2	10
53	Inhomogeneity in the lauter tun: a chromatographic view. European Food Research and Technology, 2019, 245, 521-533.	3.3	10
54	Classification of starch-gluten networks into a viscoelastic liquid or solid, based on rheological aspects — A review. International Journal of Biological Macromolecules, 2019, 136, 1018-1025.	7.5	42

#	Article	IF	CITATIONS
55	Selection of a new Saccharomyces yeast to enhance relevant sorghum beer aroma components, higher alcohols and esters. Food Microbiology, 2019, 83, 181-186.	4.2	23
56	Mechanically and Thermally Induced Degradation and Modification of Cereal Biopolymers during Grinding. Polymers, 2019, 11, 448.	4.5	9
57	Impact of altered starch functionality on wheat dough microstructure and its elongation behaviour. Food Chemistry, 2019, 290, 64-71.	8.2	18
58	Time-dependent adhesion behavior between dough and contact surfaces in bakeries. Journal of Food Engineering, 2019, 255, 24-31.	5.2	7
59	Definition of network types – Prediction of dough mechanical behaviour under shear by gluten microstructure. Scientific Reports, 2019, 9, 4700.	3.3	23
60	Formation of 3-deoxyglucosone in the malting process. Food Chemistry, 2019, 290, 187-195.	8.2	24
61	Concentration dependent rate constants of sodium substitute functionalities during wheat dough development. Food Research International, 2019, 116, 346-353.	6.2	11
62	Optimization of malting conditions for two landraces of West African sorghum and influence of mash bio-acidification on saccharification improvement. Journal of Cereal Science, 2019, 85, 192-198.	3.7	2
63	Advances in the development of wheat dough and bread by means of shearing. Journal of Food Engineering, 2019, 247, 136-143.	5.2	8
64	Influence of Fusarium avenaceum infections on barley malt: Monitoring changes in the albumin fraction of barley during the malting process. International Journal of Food Microbiology, 2019, 293, 7-16.	4.7	7
65	Forced into aging: Analytical prediction of the flavor-stability of lager beer. A review. Critical Reviews in Food Science and Nutrition, 2019, 59, 2642-2653.	10.3	29
66	Investigating on the fermentation behavior of six lactic acid bacteria strains in barley malt wort reveals limitation in key amino acids and buffer capacity. Food Microbiology, 2018, 73, 245-253.	4.2	34
67	Exploration of highâ€gravity fermentation to improve lactic acid bacteria performance and consumer's acceptance of malt wortâ€fermented beverages. International Journal of Food Science and Technology, 2018, 53, 1753-1759.	2.7	6
68	Assessment of malting and mash bio-acidification on the turnover of sorghum cyanogenic glucoside and protein hydrolysis improvement. LWT - Food Science and Technology, 2018, 90, 303-309.	5.2	7
69	Maltose formation in wheat dough depending on mechanical starch modification and dough hydration. Carbohydrate Polymers, 2018, 185, 153-158.	10.2	8
70	Wheat dough imitating artificial dough system based on hydrocolloids and glass beads. Journal of Food Engineering, 2018, 223, 144-151.	5.2	16
71	Direct link between specific structural levels of starch and hydration properties. Carbohydrate Polymers, 2018, 181, 159-166.	10.2	11
72	Staining methods for dough systems – Impact on microstructure and functionality. LWT - Food Science and Technology, 2018, 88, 139-145.	5.2	20

#	Article	IF	CITATIONS
73	Mechanical wheat flour modification and its effect on protein network structure and dough rheology. Food Chemistry, 2018, 248, 296-303.	8.2	36
74	Development and Application of an Additively Manufactured Calcium Chloride Nebulizer for Alginate 3D-Bioprinting Purposes. Journal of Functional Biomaterials, 2018, 9, 63.	4.4	25
75	A normalized texture profile analysis approach to evaluate firming kinetics of bread crumbs independent from its initial texture. Journal of Cereal Science, 2018, 81, 147-152.	3.7	18
76	Comparison of different three dimensional-printed resorbable materials: <i>In vitro</i> biocompatibility, <i>In vitro</i> degradation rate, and cell differentiation support. Journal of Biomaterials Applications, 2018, 33, 281-294.	2.4	6
77	High-Pressure Treatment of Non-Hydrated Flour Affects Structural Characteristics and Hydration. Foods, 2018, 7, 78.	4.3	8
78	Gluten Polymer Networks—A Microstructural Classification in Complex Systems. Polymers, 2018, 10, 617.	4.5	26
79	Introducing a Virtual Assistant to the Lab: A Voice User Interface for the Intuitive Control of Laboratory Instruments. SLAS Technology, 2018, 23, 476-482.	1.9	46
80	Phenolic Substances in Beer: Structural Diversity, Reactive Potential and Relevance for Brewing Process and Beer Quality. Comprehensive Reviews in Food Science and Food Safety, 2018, 17, 953-988.	11.7	85
81	A Kinetic Study on the Formation of 2―and 3â€Methylbutanal. Journal of Food Process Engineering, 2017, 40, e12375.	2.9	6
82	Laser Speckle Spectroscopy Image Analysis for High Pressure and High Temperature Treatment Discrimination on LDPE, HDPE BOPP, BOPA and PET Polymer Layers Used for Food Packaging. Journal of Food Process Engineering, 2017, 40, e12345.	2.9	1
83	Determination of bubble size distribution in gas–liquid twoâ€phase systems via an ultrasoundâ€based method. Engineering in Life Sciences, 2017, 17, 653-663.	3.6	7
84	Foam stabilization during processing of starch-based dough systems. Innovative Food Science and Emerging Technologies, 2017, 39, 267-274.	5.6	10
85	Development of wheat dough by means of shearing. Journal of Food Engineering, 2017, 201, 1-8.	5.2	8
86	Key volatile aroma compounds of lactic acid fermented malt based beverages – impact of lactic acid bacteria strains. Food Chemistry, 2017, 229, 565-573.	8.2	51
87	On the assessments of arabinoxylan localization and enzymatic modifications for enhanced protein networking and its structural impact on rye dough and bread. Food Chemistry, 2017, 229, 178-187.	8.2	15
88	Pulsatile Jet Cleaning of Filter Cloths Contaminated with Yeast Cells. Chemical Engineering and Technology, 2017, 40, 450-458.	1.5	5
89	Polyphasic characterization of lactic acid bacteria isolated from Beninese sorghum beer starter. LWT - Food Science and Technology, 2017, 80, 51-58.	5.2	6
90	Analytical Characterization of the Hydrolysis of Barley Malt Macromolecules During Enzymatic Degradation Over Time Using AF4/MALS/RI. Journal of Food Science, 2017, 82, 1326-1332.	3.1	8

#	Article	IF	CITATIONS
91	Kinetic studies of main wort flavor compounds and iso-α-acids during wort boiling: a review. European Food Research and Technology, 2017, 243, 1485-1495.	3.3	6
92	<i>Fusarium</i> Species on Barley Malt: Is Visual Assessment an Appropriate Tool for Detection?. Cereal Chemistry, 2017, 94, 659-669.	2.2	8
93	Rapid cultivar identification of barley seeds through disjoint principal component modeling. Analytical and Bioanalytical Chemistry, 2017, 409, 773-783.	3.7	0
94	Critical evaluation of viscometrically determined pasting temperatures in barley malt. Journal of the Institute of Brewing, 2017, 123, 472-479.	2.3	4
95	Additive manufactured customizable labware for biotechnological purposes. Engineering in Life Sciences, 2017, 17, 931-939.	3.6	13
96	A smart device application for the automated determination of <i>E. coli</i> colonies on agar plates. Engineering in Life Sciences, 2017, 17, 959-966.	3.6	27
97	Characterization of polymeric substance classes in cereal-based beverages using asymmetrical flow field-flow fractionation with a multi-detection system. Analytical and Bioanalytical Chemistry, 2017, 409, 5723-5734.	3.7	21
98	Physical Methods for Dealcoholization of Beverage Matrices and their Impact on Quality Attributes. ChemBioEng Reviews, 2017, 4, 310-326.	4.4	41
99	Development of fibre-enriched wheat breads: impact of recovered agroindustrial by-products on physicochemical properties of dough and bread characteristics. European Food Research and Technology, 2017, 243, 1973-1988.	3.3	14
100	The production of gluten-free beer: Degradation of hordeins during malting and brewing and the application of modern process technology focusing on endogenous malt peptidases. Trends in Food Science and Technology, 2017, 67, 129-138.	15.1	41
101	Structure stabilization in starch-quinoa bran doughs: The role of water availability and gelatinization. Carbohydrate Polymers, 2017, 174, 1018-1025.	10.2	13
102	Optimized analytical parameters for the viscometric determination of pasting temperatures of barley malt. Food Hydrocolloids, 2017, 62, 149-157.	10.7	8
103	Effect of mechanically modified wheat flour on dough fermentation properties and bread quality. European Food Research and Technology, 2017, 243, 287-296.	3.3	24
104	Effect of Rye Bran Particles on Structure Formation Properties of Rye Dough and Bread. Journal of Food Processing and Preservation, 2017, 41, e12998.	2.0	1
105	Structural, textural and sensory impact of sodium reduction on long fermented pizza. Food Chemistry, 2017, 234, 398-407.	8.2	31
106	Interrelation between mechanical and biological aeration in starch-based gluten-free dough systems. Journal of Cereal Science, 2017, 76, 28-34.	3.7	6
107	Management of Uncertainty by Statistical Process Control and a Genetic Tuned Fuzzy System. Discrete Dynamics in Nature and Society, 2016, 2016, 1-11.	0.9	5
108	Multi-Variable, Multi-Layer Graphical Knowledge Unit for Storing and Representing Density Clusters of Multi-Dimensional Big Data. Applied Sciences (Switzerland), 2016, 6, 96.	2.5	0

#	Article	IF	CITATIONS
109	Biomass estimation in <i>Pichia pastoris</i> cultures by combined singleâ€wavelength fluorescence measurements. Biotechnology and Bioengineering, 2016, 113, 2394-2402.	3.3	2
110	Ultrasoundâ€based, inâ€line monitoring of anaerobe yeast fermentation: model, sensor design and process application. International Journal of Food Science and Technology, 2016, 51, 710-719.	2.7	9
111	Flavor of lactic acid fermented malt based beverages: Current status and perspectives. Trends in Food Science and Technology, 2016, 54, 37-51.	15.1	73
112	Incorporation of negative rules and evolution of a fuzzy controller for yeast fermentation process. Bioprocess and Biosystems Engineering, 2016, 39, 1225-1233.	3.4	5
113	Possibilities to derive empirical dough characteristics from fundamental rheology. Trends in Food Science and Technology, 2016, 57, 1-10.	15.1	15
114	β-d-Glucosidase as "key enzyme―for sorghum cyanogenic glucoside (dhurrin) removal and beer bioflavouring. Food and Chemical Toxicology, 2016, 97, 217-223.	3.6	20
115	Protein network analysis — A new approach for quantifying wheat dough microstructure. Food Research International, 2016, 89, 812-819.	6.2	97
116	Zukunftsweisende Methoden der Prozessführung bei der Bierherstellung. Chemie-Ingenieur-Technik, 2016, 88, 1880-1890.	0.8	1
117	Das Zusammenspiel von Verfahrenstechnik undÂTechnologie in der Brauerei. Chemie-Ingenieur-Technik, 2016, 88, 1857-1868.	0.8	3
118	Physikalische Verfahren zur Entalkoholisierung verschiedener GetrÄ n kematrizes und deren Einfluss auf qualitÄ t srelevante Merkmale. Chemie-Ingenieur-Technik, 2016, 88, 1911-1928.	0.8	6
119	Analyse der Geschichte der Schankanlagentechnik und ihre Auswirkungen auf den heutigen Stand der Technik. Chemie-Ingenieur-Technik, 2016, 88, 1891-1903.	0.8	0
120	500 Jahre Reinheitsgebot - Verfahrenstechnik rund ums Bier. Chemie-Ingenieur-Technik, 2016, 88, 1847-1847.	0.8	1
121	Scaleâ€up of Dry Hopping Trials: Importance of Scale for Aroma and Taste Perceptions. Chemie-Ingenieur-Technik, 2016, 88, 1955-1965.	0.8	18
122	Phenotypical and molecular characterization of yeast content in the starter of "Tchoukoutou,―a Beninese African sorghum beer. European Food Research and Technology, 2016, 242, 2147-2160.	3.3	13
123	A Vision System for Surface Homogeneity Analysis of Dough Based on the Grey Level Coâ€occurrence Matrix (<scp>GLCM</scp>) for Optimum Kneading Time Prediction. Journal of Food Process Engineering, 2016, 39, 166-177.	2.9	11
124	Non-Isothermal Kinetic Models of Degradation of S-Methylmethionine. Journal of Food Process Engineering, 2016, 39, 573-580.	2.9	3
125	Compositional Changes and Baking Performance of Rye Dough As Affected by Microbial Transglutaminase and Xylanase. Journal of Agricultural and Food Chemistry, 2016, 64, 5751-5758.	5.2	16
126	Technological and Analytical Methods for Arabinoxylan Quantification from Cereals. Critical Reviews in Food Science and Nutrition, 2016, 56, 999-1011.	10.3	22

#	Article	IF	CITATIONS
127	Influence of malting and lactic acid fermentation on functional bioactive components in cerealâ€based raw materials: a review paper. International Journal of Food Science and Technology, 2016, 51, 14-22.	2.7	34
128	Gluten-specific peptidase activity of barley as affected by germination and its impact on gluten degradation. Journal of Cereal Science, 2016, 68, 93-99.	3.7	15
129	Variation of sunstruck flavor-related substances in malted barley, triticale and spelt. European Food Research and Technology, 2016, 242, 11-23.	3.3	7
130	Starch–gluten interactions during gelatinization and its functionality in dough like model systems. Food Hydrocolloids, 2016, 54, 196-201.	10.7	137
131	Production and application of barley malt extract with high peptidase activity for the degradation of gluten in wort. European Food Research and Technology, 2016, 242, 585-597.	3.3	9
132	Influence of Malting on the Protein Composition of Spelt (<i>Triticum spelta</i> L.) â€~Frankenkorn'. Cereal Chemistry, 2016, 93, 1-9.	2.2	4
133	Influence of Malting on the Protein Composition of Triticale (× <i>Triticosecale</i> Wittmack) â€~Trigold'. Cereal Chemistry, 2016, 93, 10-19.	2.2	7
134	Part III: the influence of serial repitching of <i>Saccharomyces pastorianus</i> on the production dynamics of some important aroma compounds during the fermentation of barley and gluten-free buckwheat and quinoa wort. Journal of the Institute of Brewing, 2015, 121, 387-399.	2.3	8
135	Studies on the mashing conditions of teff (<i><scp>E</scp>ragrostis tef</i>) malt as a raw material for lactic acidâ€fermented glutenâ€free beverage. International Journal of Food Science and Technology, 2015, 50, 2032-2037.	2.7	10
136	Optimisation of fermentation conditions for probiotication of sorghum wort by <i>Lactobacillus acidophilus </i> <scp>LA</scp> 5. International Journal of Food Science and Technology, 2015, 50, 2271-2279.	2.7	7
137	Use of Exogenous Enzymes and Process Management to Improve the Shelf Life of Traditional Opaque Beer. Journal of the American Society of Brewing Chemists, 2015, 73, 22-28.	1.1	2
138	Use of Polyphenol-Rich Hop Products to Reduce Sunstruck Flavor in Beer. Journal of the American Society of Brewing Chemists, 2015, 73, 228-235.	1.1	11
139	Comparison of Foam Analysis Methods and the Impact of Beer Components on Foam Stability. Journal of the American Society of Brewing Chemists, 2015, 73, 170-178.	1.1	7
140	Comparative Study of the Contribution of Hop (<i>Humulus Lupulus</i> L.) Hard Resins Extracted from Different Hop Varieties to Beer Quality Parameters. Journal of the American Society of Brewing Chemists, 2015, 73, 115-123.	1.1	10
141	Part I: the influence of serial repitching of <i>Saccharomyces pastorianus</i> on the uptake dynamics of metal ions and fermentable carbohydrates during the fermentation of barley and gluten-free buckwheat and quinoa wort. Journal of the Institute of Brewing, 2015, 121, 356-369.	2.3	3
142	Turbidity potentials of single longâ€chain fatty acids and gelatinised starch in synthetic lautering wort. International Journal of Food Science and Technology, 2015, 50, 906-912.	2.7	1
143	Onâ€line yeast propagation process monitoring and control using an intelligent automatic control system. Engineering in Life Sciences, 2015, 15, 83-95.	3.6	10
144	Part II: the influence of the serial repitching of <i>Saccharomyces pastorianus</i> on the uptake dynamics of amino acids during the fermentation of barley and gluten-free buckwheat and quinoa wort. Journal of the Institute of Brewing, 2015, 121, 370-386.	2.3	1

#	Article	IF	CITATIONS
145	Impact of arabinoxylan addition on protein microstructure formation in wheat and rye dough. Journal of Food Engineering, 2015, 154, 10-16.	5.2	51
146	Starch gelatinization and its complexity for analysis. Starch/Staerke, 2015, 67, 30-41.	2.1	132
147	Flavor impacts of glycerol in the processing of yeast fermented beverages: a review. Journal of Food Science and Technology, 2015, 52, 7588-7598.	2.8	79
148	Strategies for the aeration of gluten-free bread – A review. Trends in Food Science and Technology, 2015, 46, 75-84.	15.1	33
149	Isolation of quinoa protein by milling fractionation and solvent extraction. Food and Bioproducts Processing, 2015, 96, 20-26.	3.6	48
150	Common wheat (Triticum aestivum L.): evaluating microstructural changes during the malting process by using confocal laser scanning microscopy and scanning electron microscopy. European Food Research and Technology, 2015, 241, 239-252.	3.3	27
151	Effect of amino acid supply on the transcription of flavour-related genes and aroma compound production during lager yeast fermentation. LWT - Food Science and Technology, 2015, 63, 289-297.	5.2	31
152	Investigation of fermentation conditions for teff (Eragrostis tef) malt-wort by Lactobacillus amylolyticus. LWT - Food Science and Technology, 2015, 61, 164-171.	5.2	18
153	Wheat Dough Microstructure: The Relation Between Visual Structure and Mechanical Behavior. Critical Reviews in Food Science and Nutrition, 2015, 55, 369-382.	10.3	70
154	Processing of bottom-fermented gluten-free beer-like beverages based on buckwheat and quinoa malt with chemical and sensory characterization. Journal of the Institute of Brewing, 2014, 120, n/a-n/a.	2.3	27
155	Effects of yeast and maltose concentration on ultrasonic velocity and attenuation coefficient and its application for process monitoring. Engineering in Life Sciences, 2014, 14, 433-441.	3.6	12
156	Critical process parameter of alcoholic yeast fermentation: speed of sound and density in the temperature range 5–30°C. International Journal of Food Science and Technology, 2014, 49, 2441-2448.	2.7	9
157	Sensitization to Beer Ingredients in Chinese Individuals with Beer Allergy: A Clinical Study of 20 Cases. International Archives of Allergy and Immunology, 2014, 163, 135-141.	2.1	9
158	Teff (Eragrostis tef) as a raw material for malting, brewing and manufacturing of gluten-free foods and beverages: a review. Journal of Food Science and Technology, 2014, 51, 2881-2895.	2.8	169
159	Determination of cleaning end of dairy protein fouling using an online system combining ultrasonic and classification methods. Food and Bioprocess Technology, 2014, 7, 506-515.	4.7	20
160	Influence of malting conditions on sorghum (<i>Sorghum bicolor</i> (L.) Moench) as a raw material for fermented beverages. Food Science and Technology International, 2014, 20, 453-463.	2.2	25
161	Differential transcribed yeast genes involved in flavour formation and its associated amino acid metabolism during brewery fermentation. European Food Research and Technology, 2014, 239, 421-439.	3.3	26
162	Common wheat (<i>Triticum aestivum</i> L.) and its use as a brewing cereal - a review. Journal of the Institute of Brewing, 2014, 120, 1-15.	2.3	83

#	Article	IF	CITATIONS
163	Impact of quinoa bran on gluten-free dough and bread characteristics. European Food Research and Technology, 2014, 239, 767-775.	3.3	55
164	<i>Humulus lupulus</i> - a story that begs to be told. A review. Journal of the Institute of Brewing, 2014, 120, n/a-n/a.	2.3	107
165	Application of a modified GA, ACO and a random search procedure to solve the production scheduling of a case study bakery. Expert Systems With Applications, 2014, 41, 5882-5891.	7.6	32
166	Volume and texture improvement of gluten-free bread using quinoa white flour. Journal of Cereal Science, 2014, 59, 41-47.	3.7	103
167	The influence of serial repitching of Saccharomyces pastorianus on its karyotype and protein profile during the fermentation of gluten-free buckwheat and quinoa wort. International Journal of Food Microbiology, 2014, 185, 93-102.	4.7	8
168	Protein Profile Characterization of Hop (<i>Humulus Lupulus</i> L.) Varieties. Journal of the American Society of Brewing Chemists, 2014, 72, 184-191.	1.1	7
169	Effect of Drying Temperature and Time on Alpha-Amylase, Beta-Amylase, Limit Dextrinase Activities and Dimethyl Sulphide Level of Teff (Eragrostis tef) Malt. Food and Bioprocess Technology, 2013, 6, 3462-3472.	4.7	19
170	On the Theoretical Time-Scale Estimation of Physical and Chemical Kinetics Whilst Wheat Dough Processing. Food Biophysics, 2013, 8, 69-79.	3.0	6
171	Thermal stability of starch degrading enzymes of teff (Eragrostis tef) malt during isothermal mashing. Process Biochemistry, 2013, 48, 1928-1932.	3.7	11
172	Significant amino acids in aroma compound profiling during yeast fermentation analyzed by PLS regression. LWT - Food Science and Technology, 2013, 51, 423-432.	5.2	79
173	A case study on using evolutionary algorithms to optimize bakery production planning. Expert Systems With Applications, 2013, 40, 6837-6847.	7.6	24
174	Malting process optimization of spelt (Triticum spelta L.) for the brewing process. LWT - Food Science and Technology, 2013, 50, 99-109.	5.2	17
175	Influence of the range of molecular weight distribution of beer components on the intensity of palate fullness. European Food Research and Technology, 2013, 236, 65-75.	3.3	27
176	Structural analysis of fructans produced by acetic acid bacteria reveals a relation to hydrocolloid function. Carbohydrate Polymers, 2013, 92, 1234-1242.	10.2	87
177	Identification of Lactobacillus curvatus TMW 1.624 dextransucrase and comparative characterization with Lactobacillus reuteri TMW 1.106 and Lactobacillus animalis TMW 1.971 dextransucrases. Food Microbiology, 2013, 34, 52-61.	4.2	38
178	Determination of the influence of starch sources and mashing procedures on the range of the molecular weight distribution of beer using field-flow fractionation. Journal of the Institute of Brewing, 2013, 119, n/a-n/a.	2.3	9
179	Effect of teff (<i>Eragrostis tef</i>) variety and storage on malt quality attributes. Journal of the Institute of Brewing, 2013, 119, 64-70.	2.3	16
180	Usage of Ultrasound and Classification Methods for Continuous Detection of Dairy Fouling. Chemie-Ingenieur-Technik, 2013, 85, 1589-1596.	0.8	0

#	Article	IF	CITATIONS
181	Theoretical Study on a Statistical Method for the Simple and Reliable Pre-Selection of Wheat Malt Types for Brewing Purposes Based on Generally Accepted Quality Characteristics. Journal of the American Society of Brewing Chemists, 2013, 71, 67-75.	1.1	5
182	Protein Modifications and Metabolic Changes Taking Place during the Malting of Common Wheat (<i>Triticum Aestivum</i> L.). Journal of the American Society of Brewing Chemists, 2013, 71, 153-160.	1.1	16
183	Robust spectral estimation for speed of sound with phase shift correction applied online in yeast fermentation processes. Engineering in Life Sciences, 2012, 12, 603-614.	3.6	5
184	Effects of Acidification, Sodium Chloride, and Moisture Levels on Wheat Dough: I. Modeling of Rheological and Microstructural Properties. Food Biophysics, 2012, 7, 190-199.	3.0	38
185	Effects of Acidification, Sodium Chloride, and Moisture Levels on Wheat Dough: II. Modeling of Bread Texture and Staling Kinetics. Food Biophysics, 2012, 7, 200-208.	3.0	21
186	An overview of separation methods in starch analysis: The importance of size exclusion chromatography and field flow fractionation. Starch/Staerke, 2012, 64, 683-695.	2.1	25
187	Possibilities to increase the quality in gluten-free bread production: an overview. European Food Research and Technology, 2012, 235, 195-208.	3.3	195
188	Effect of structurally different microbial homoexopolysaccharides on the quality of gluten-free bread. European Food Research and Technology, 2012, 235, 139-146.	3.3	80
189	The response of rice grain quality to ozone exposure during growth depends on ozone level and genotype. Environmental Pollution, 2012, 163, 199-206.	7.5	37
190	Sodium chloride – sensory, preserving and technological impact on yeastâ€leavened products. International Journal of Food Science and Technology, 2012, 47, 1798-1807.	2.7	21
191	Impact of sodium chloride on wheat flour dough for yeastâ€leavened products. II. Baking quality parameters and their relationship. Journal of the Science of Food and Agriculture, 2012, 92, 299-306.	3.5	38
192	Impact of sodium chloride on wheat flour dough for yeastâ€leavened products. I. Rheological attributes. Journal of the Science of Food and Agriculture, 2012, 92, 585-592.	3.5	91
193	Comparison of beer quality attributes between beers brewed with 100% barley malt and 100% barley raw material. Journal of the Science of Food and Agriculture, 2012, 92, 803-813.	3.5	67
194	Quantification in starch microstructure as a function of baking time. Procedia Food Science, 2011, 1, 145-152.	0.6	14
195	Implementation of a novel tool to quantify dough microstructure. Procedia Food Science, 2011, 1, 1-6.	0.6	9
196	Part II. The Use of Malt Produced with 70% Less Malting Loss for Beer Production: Impact on Processability and Final Quality. Journal of the American Society of Brewing Chemists, 2011, 69, 239-254.	1.1	3
197	Large-Scale Study on Beer Filtration with Combined Filter Aid Additions to Cellulose Fibres. Journal of the Institute of Brewing, 2011, 117, 314-328.	2.3	23
198	Timeâ€ofâ€flight prediction for fermentation process monitoring. Engineering in Life Sciences, 2011, 11, 417-428.	3.6	7

#	Article	IF	CITATIONS
199	Bioprocess monitoring and control via adaptive sensor calibration. Engineering in Life Sciences, 2011, 11, 402-416.	3.6	11
200	Protein changes during malting and brewing with focus on haze and foam formation: a review. European Food Research and Technology, 2011, 232, 191-204.	3.3	102
201	Influence of the malting parameters on the haze formation of beer after filtration. European Food Research and Technology, 2011, 233, 587-597.	3.3	26
202	Starch reâ€crystallization kinetics as a function of various cations. Starch/Staerke, 2011, 63, 792-800.	2.1	60
203	Ultrasonic characterization of aqueous solutions with varying sugar and ethanol content using multivariate regression methods. Journal of Chemometrics, 2011, 25, 216-223.	1.3	14
204	Labortest zur Minimierung des Versuchsaufwandes bei Pilotfiltrationen. Chemie-Ingenieur-Technik, 2011, 83, 822-829.	0.8	0
205	Investigation of heat transfer in cereal-based foam from a micro-scale perspective using the lattice Boltzmann method. Journal of Non-Equilibrium Thermodynamics, 2011, 36, .	4.2	5
206	Investigation of Beer Filtration Using Cellulose Fibers in a Pilot-Scale Filter Plant. Journal of the American Society of Brewing Chemists, 2010, 68, 139-147.	1.1	2
207	A New Validation of Relevant Substances for the Evaluation of Beer Aging Depending on the Employed Boiling System. Journal of the Institute of Brewing, 2010, 116, 41-48.	2.3	26
208	An Innovative Micro-Modelling of Simultaneous Heat and Moisture Transfer during Bread Baking Using the Lattice Boltzmann Method. Food Biophysics, 2010, 5, 161-176.	3.0	14
209	Modification of the rheological behavior of amaranth (Amaranthus hypochondriacus) dough. Journal of Cereal Science, 2010, 51, 350-356.	3.7	52
210	Prozessanalytik: Unverzichtbares Werkzeug für effiziente Prozesse. Chemie-Ingenieur-Technik, 2010, 82, 359-359.	0.8	0
211	Effects of selected lactic acid bacteria on the characteristics of amaranth sourdough. Journal of the Science of Food and Agriculture, 2010, 90, 2326-2332.	3.5	36
212	Impact of Different Hop Compounds on the Overfoaming Volume of Beer Caused by Primary Gushing. Journal of the Institute of Brewing, 2010, 116, 459-463.	2.3	12
213	Konzentrationsbestimmung in Wasser-Zucker-Ethanol-Gemischen mittels adiabatischer KompressibilitĤund DichteConcentration Determination in Water-Sugar-Ethanol-Mixtures via Adiabatic Compressibility and Density. TM Technisches Messen, 2010, 77, 30-37.	0.7	3
214	Turbidity and Haze Formation in Beer - Insights and Overview. Journal of the Institute of Brewing, 2010, 116, 360-368.	2.3	81
215	DETECTION OF THE RED PALM WEEVIL <i>RHYNCHOPHORUS FERRUGINEUS</i> USING ITS BIOACOUSTICS FEATURES. Bioacoustics, 2010, 19, 177-194.	1.7	34
216	Computer Modelling and Simulation of Bakeries' Production Planning. International Journal of Food Engineering, 2009, 5, .	1.5	6

#	Article	IF	CITATIONS
217	Four-channel sensor-array for the non-contact temperature measurement of liquids in hermetically closed systems. Food Control, 2009, 20, 1119-1126.	5.5	4
218	Future Aspects of Bioprocess Monitoring. Advances in Biochemical Engineering/Biotechnology, 2006, 105, 249-293.	1.1	48
219	Hybrid data model for the improvement of an ultrasonic-based gravity measurement system. Food Control, 2002, 13, 223-233.	5.5	16
220	Application of fuzzy logic in multicomponent analysis by optodes1The results presented are a part of the planned doctoral thesis from M. Wollenweber.1. Biosensors and Bioelectronics, 1997, 12, 917-923.	10.1	5
221	Flow-injection analysis systems with immobilized enzymes. Improvement of applicability by integration of coupled reactions, separation steps and background correction. Talanta, 1996, 43, 937-942.	5.5	6
222	d- andl-Lactate determination in dairy products: Presentation of a fast automated analysis system. Zeitschrift Fur Lebensmittel-Untersuchung Und -Forschung, 1995, 201, 537-540.	0.6	3