Hengyou Weng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9589494/publications.pdf

Version: 2024-02-01

279798 434195 7,792 31 23 31 citations h-index g-index papers 34 34 34 6826 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Recognition of RNA N6-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nature Cell Biology, 2018, 20, 285-295.	10.3	1,650
2	FTO Plays an Oncogenic Role in Acute Myeloid Leukemia as a N 6 -Methyladenosine RNA Demethylase. Cancer Cell, 2017, 31, 127-141.	16.8	1,139
3	R-2HG Exhibits Anti-tumor Activity by Targeting FTO/m6A/MYC/CEBPA Signaling. Cell, 2018, 172, 90-105.e23.	28.9	794
4	METTL14 Inhibits Hematopoietic Stem/Progenitor Differentiation and Promotes Leukemogenesis via mRNA m6A Modification. Cell Stem Cell, 2018, 22, 191-205.e9.	11,1	749
5	m6A Modification in Coding and Non-coding RNAs: Roles and Therapeutic Implications in Cancer. Cancer Cell, 2020, 37, 270-288.	16.8	688
6	RNA N6-methyladenosine modification in cancers: current status and perspectives. Cell Research, 2018, 28, 507-517.	12.0	586
7	Histone H3 trimethylation at lysine 36 guides m6A RNA modification co-transcriptionally. Nature, 2019, 567, 414-419.	27.8	452
8	Targeting FTO Suppresses Cancer Stem Cell Maintenance and Immune Evasion. Cancer Cell, 2020, 38, 79-96.e11.	16.8	389
9	Roles of METTL3 in cancer: mechanisms and therapeutic targeting. Journal of Hematology and Oncology, 2020, 13, 117.	17.0	269
10	RNA Demethylase ALKBH5 Selectively Promotes Tumorigenesis and Cancer Stem Cell Self-Renewal in Acute Myeloid Leukemia. Cell Stem Cell, 2020, 27, 64-80.e9.	11.1	225
11	The Biogenesis and Precise Control of RNA m6A Methylation. Trends in Genetics, 2020, 36, 44-52.	6.7	198
12	miR-22 has a potent anti-tumour role with therapeutic potential in acute myeloid leukaemia. Nature Communications, 2016, 7, 11452.	12.8	113
13	Overexpression and knockout of miR-126 both promote leukemogenesis. Blood, 2015, 126, 2005-2015.	1.4	65
14	RNA Modifications in Cancer: Functions, Mechanisms, and Therapeutic Implications. Annual Review of Cancer Biology, 2020, 4, 221-240.	4.5	60
15	The pathological role and prognostic impact of miR-181 in acute myeloid leukemia. Cancer Genetics, 2015, 208, 225-229.	0.4	49
16	Eradication of Acute Myeloid Leukemia with FLT3 Ligand–Targeted miR-150 Nanoparticles. Cancer Research, 2016, 76, 4470-4480.	0.9	48
17	PBX3 and MEIS1 Cooperate in Hematopoietic Cells to Drive Acute Myeloid Leukemias Characterized by a Core Transcriptome of the <i>MLL</i> -Rearranged Disease. Cancer Research, 2016, 76, 619-629.	0.9	45
18	Targeted inhibition of STAT/TET1 axis as a therapeutic strategy for acute myeloid leukemia. Nature Communications, 2017, 8, 2099.	12.8	45

#	Article	IF	CITATIONS
19	Homoharringtonine exhibits potent anti-tumor effect and modulates DNA epigenome in acute myeloid leukemia by targeting SP1/TET1/5hmC. Haematologica, 2020, 105, 148-160.	3.5	41
20	RNA N 6-Methyladenosine Modification in Normal and Malignant Hematopoiesis. Advances in Experimental Medicine and Biology, 2019, 1143, 75-93.	1.6	35
21	ALOX5 exhibits anti-tumor and drug-sensitizing effects in MLL-rearranged leukemia. Scientific Reports, 2017, 7, 1853.	3.3	26
22	Identification of MLL-fusion/MYC⊣miR-26⊣TET1 signaling circuit in MLL-rearranged leukemia. Cancer Letters, 2016, 372, 157-165.	7.2	25
23	N ⁶ â€methyladenosine Steers RNA Metabolism and Regulation in Cancer. Cancer Communications, 2021, 41, 538-559.	9.2	24
24	miR-550-1 functions as a tumor suppressor in acute myeloid leukemia via the hippo signaling pathway. International Journal of Biological Sciences, 2020, 16, 2853-2867.	6.4	11
25	Effective Novel Fto Inhibitors Show Potent Anti-Cancer Efficacy and Suppress Drug Resistance. Blood, 2019, 134, 233-233.	1.4	5
26	The N6-Adenine Methyltransferase METTL14 Plays an Oncogenic Role in Acute Myeloid Leukemia. Blood, 2016, 128, 1536-1536.	1.4	1
27	Overexpression and Knockout of Mir-126 Both Promote Leukemogenesis through Targeting Distinct Gene Signaling. Blood, 2015, 126, 3667-3667.	1.4	1
28	Targeted Inhibition of STAT/TET1 Axis As a Potent Therapeutic Strategy for Acute Myeloid Leukemia. Blood, 2017, 130, 857-857.	1.4	1
29	Alox5 Functions As Both Tumor Suppressor and Drug Sensitizer in AML. Blood, 2016, 128, 2851-2851.	1.4	0
30	ALKBH5 Functions As an Oncogene in Acute Myeloid Leukemia. Blood, 2018, 132, 3910-3910.	1.4	0
31	TET1 Modulates DNA Replication in Leukemia Cells Via a Catalytic-Independent Mechanism through Cooperating with KAT8. Blood, 2019, 134, 1249-1249.	1.4	O