
Daniel Catovsky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9589433/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	iwCLL guidelines for diagnosis, indications for treatment, response assessment, and supportive management of CLL. Blood, 2018, 131, 2745-2760.	1.4	1,069
2	Assessment of fludarabine plus cyclophosphamide for patients with chronic lymphocytic leukaemia (the LRF CLL4 Trial): a randomised controlled trial. Lancet, The, 2007, 370, 230-239.	13.7	660
3	The human type-C retrovirus, HTLV, in blacks from the Caribbean region, and relationship to adult T-cell leukemia/lymphoma. International Journal of Cancer, 1982, 30, 257-264.	5.1	578
4	Improvement of the Chronic Lymphocytic Leukemia Scoring System With the Monoclonal Antibody SN8(CD79b). American Journal of Clinical Pathology, 1997, 108, 378-382.	0.7	336
5	Mutational Status of the <i>TP53</i> Gene As a Predictor of Response and Survival in Patients With Chronic Lymphocytic Leukemia: Results From the LRF CLL4 Trial. Journal of Clinical Oncology, 2011, 29, 2223-2229.	1.6	235
6	Longâ€ŧerm followâ€up of 233 patients with hairy cell leukaemia, treated initially with pentostatin or cladribine, at a median of 16 years from diagnosis. British Journal of Haematology, 2009, 145, 733-740.	2.5	229
7	Consensus guidelines for the diagnosis and management of patients with classic hairy cell leukemia. Blood, 2017, 129, 553-560.	1.4	193
8	The clinical significance of NOTCH1 and SF3B1 mutations in the UK LRF CLL4 trial. Blood, 2013, 121, 468-475.	1.4	190
9	A genome-wide association study identifies multiple susceptibility loci for chronic lymphocytic leukemia. Nature Genetics, 2014, 46, 56-60.	21.4	166
10	The relationship between chronic lymphocytic leukaemia and prolymphocytic leukaemia. British Journal of Haematology, 1986, 63, 377-387.	2.5	159
11	Prognostic factors identified three risk groups in the LRF CLL4 trial, independent of treatment allocation. Haematologica, 2010, 95, 1705-1712.	3.5	116
12	Long remissions in hairy cell leukemia with purine analogs. Cancer, 2005, 104, 2442-2448.	4.1	109
13	The relationship between chronic lymphocytic leukaemia and prolymphocytic leukaemia. British Journal of Haematology, 1987, 65, 23-29.	2.5	99
14	The relationship between chronic lymphocytic leukaemia and prolymphocytic leukaemia British Journal of Haematology, 1986, 64, 77-86.	2.5	90
15	Germ line mutations in shelterin complex genes are associated with familial chronic lymphocytic leukemia. Blood, 2016, 128, 2319-2326.	1.4	90
16	Polyclonal integration of HTLV-I proviral DNA in lymphocytes from HTLV-I seropositive individuals: an intermediate state between the healthy carrier state and smouldering ATL. British Journal of Haematology, 1988, 68, 169-174.	2.5	79
17	The role of ultrastructural cytochemistry and monoclonal antibodies in clarifying the nature of undifferentiated cells in acute leukaemia. British Journal of Haematology, 1988, 69, 205-211.	2.5	76
18	Revised guidelines for the diagnosis and management of hairy cell leukaemia and hairy cell leukaemia variant*. British Journal of Haematology, 2012, 156, 186-195.	2.5	76

DANIEL CATOVSKY

#	Article	IF	CITATIONS
19	Genome-wide association analysis implicates dysregulation of immunity genes in chronic lymphocytic leukaemia. Nature Communications, 2017, 8, 14175.	12.8	75
20	Rituximab, used alone or in combination, is superior to other treatment modalities in splenic marginal zone lymphoma. British Journal of Haematology, 2012, 159, 322-328.	2.5	69
21	ATM mutation rather than BIRC3 deletion and/or mutation predicts reduced survival in 11q-deleted chronic lymphocytic leukemia: data from the UK LRF CLL4 trial. Haematologica, 2014, 99, 736-742.	3.5	69
22	Long-term results for pentostatin and cladribine treatment of hairy cell leukemia. Leukemia and Lymphoma, 2011, 52, 21-24.	1.3	65
23	Two new cell lines from B-prolymphocytic leukaemia: Characterization by morphology, immunological markers, karyotype and Ig gene rearrangement. International Journal of Cancer, 1986, 38, 531-538.	5.1	64
24	ζ-Chain associated protein 70 and CD38 combined predict the time to first treatment in patients with chronic lymphocytic leukemia. Cancer, 2005, 104, 2124-2132.	4.1	63
25	Genetic Predisposition to Chronic Lymphocytic Leukemia Is Mediated by a BMF Super-Enhancer Polymorphism. Cell Reports, 2016, 16, 2061-2067.	6.4	58
26	Long-term follow-up after purine analogue therapy in hairy cell leukaemia. Best Practice and Research in Clinical Haematology, 2015, 28, 217-229.	1.7	57
27	The clinical significance of patients' sex in chronic lymphocytic leukemia. Haematologica, 2014, 99, 1088-1094.	3.5	55
28	Rituximab with pentostatin or cladribine: an effective combination treatment for hairy cell leukemia after disease recurrence. Leukemia and Lymphoma, 2011, 52, 75-78.	1.3	53
29	Histological Study of Bone Marrow Regeneration following Chemotherapy for Acute Myeloid Leukaemia and Chronic Granulocytic Leukaemia in Blast Transformation. British Journal of Haematology, 1980, 45, 535-540.	2.5	48
30	Blast Crisis of Chronic Granulocytic Leukemia with Mast Cell and Basophilic Precursors. American Journal of Clinical Pathology, 1985, 83, 254-259.	0.7	48
31	Combinations of ZAP-70, CD38 and IGHV mutational status as predictors of time to first treatment in CLL. Leukemia and Lymphoma, 2008, 49, 2108-2115.	1.3	48
32	CD38 expression as a prognostic indicator in chronic lymphocytic leukaemia. The Hematology Journal, 2004, 5, 145-151.	1.4	47
33	The role of rituximab in combination with pentostatin or cladribine for the treatment of recurrent/refractory hairy cell leukemia. Cancer, 2007, 110, 2240-2247.	4.1	47
34	Patients' experience of chronic lymphocytic leukaemia: baseline healthâ€related quality of life results from the LRF CLL4 trial. British Journal of Haematology, 2008, 143, 690-697.	2.5	45
35	Genetic correlation between multiple myeloma and chronic lymphocytic leukaemia provides evidence for shared aetiology. Blood Cancer Journal, 2019, 9, 1.	6.2	40
36	Chlorambucil—Still Not Bad: A Reappraisal. Clinical Lymphoma, Myeloma and Leukemia, 2011, 11, S2-S6.	0.4	35

3

DANIEL CATOVSKY

#	Article	IF	CITATIONS
37	Clinical significance of TP53, BIRC3, ATM and MAPK-ERK genes in chronic lymphocytic leukaemia: data from the randomised UK LRF CLL4 trial. Leukemia, 2020, 34, 1760-1774.	7.2	34
38	Genome-wide association analysis of chronic lymphocytic leukaemia, Hodgkin lymphoma and multiple myeloma identifies pleiotropic risk loci. Scientific Reports, 2017, 7, 41071.	3.3	31
39	Insight into the pathogenesis of chronic lymphocytic leukemia (CLL) through analysis of IgVH gene usage and mutation status in familial CLL. Blood, 2008, 111, 5691-5693.	1.4	30
40	The morphology of CLL revisited: the clinical significance of prolymphocytes and correlations with prognostic/molecular markers in the LRF CLL4 trial. British Journal of Haematology, 2016, 174, 767-775.	2.5	29
41	Quality of life in chronic lymphocytic leukemia: 5-year results from the multicenter randomized LRF CLL4 trial. Leukemia and Lymphoma, 2012, 53, 1289-1298.	1.3	28
42	Cytochrome P450 Allele <i>CYP3A7*1C</i> Associates with Adverse Outcomes in Chronic Lymphocytic Leukemia, Breast, and Lung Cancer. Cancer Research, 2016, 76, 1485-1493.	0.9	28
43	Early Results from LRF CLL4: A UK Multicenter Randomized Trial Blood, 2005, 106, 716-716.	1.4	27
44	Haematological Reconstitution after Autografting for Chronic Granulocytic Leukaemia in Transformation: the Influence of Previous Splenectomy. British Journal of Haematology, 1980, 45, 223-231.	2.5	26
45	Clinical significance of DNA methylation in chronic lymphocytic leukemia patients: results from 3 UK clinical trials. Blood Advances, 2019, 3, 2474-2481.	5.2	25
46	Prognostic Factors in the UK LRF CLL4 Trial Blood, 2005, 106, 2099-2099.	1.4	20
47	Cytochemistry of Normal Lymphocyte Subsets Defined by Monoclonal Antibodies and Immunocolloidal Gold. Scandinavian Journal of Haematology, 1983, 30, 433-443.	0.0	18
48	Response to Therapy and Survival in CLL Is Influenced by Genetic Markers. Preliminary Analysis from the LRF CLL4 Trial Blood, 2004, 104, 13-13.	1.4	18
49	Long-Term Follow-up of 228 Hairy Cell Leukemia Patients Treated with Pentostatin or Cladribine with 15.4 Years Median Time from Diagnosis Blood, 2008, 112, 2101-2101.	1.4	15
50	CLLU1 expression has prognostic value in chronic lymphocytic leukemia after first-line therapy in younger patients and in those with mutated IGHV genes. Haematologica, 2013, 98, 274-278.	3.5	14
51	Prognostic Factors in the UK LRF CLL4 Trial Blood, 2006, 108, 299-299.	1.4	14
52	Outcomes in Patients with Splenic Marginal Zone Lymphoma or Marginal Zone Leukemia/Lymphoma Treated with Immunotherapy, Chemoimmunotherapy, or Chemotherapy Blood, 2005, 106, 922-922.	1.4	13
53	Regression of intracerebral lesions in T prolymphocytic leukaemia treated with intravenous deoxycoformycin. European Journal of Haematology, 2009, 40, 185-187.	2.2	12
54	The longâ€ŧerm outcome of patients in the LRF CLL 4 trial: the effect of salvage treatment and biological markers in those surviving 10Âyears. British Journal of Haematology, 2016, 172, 228-237.	2.5	12

#	Article	IF	CITATIONS
55	Prolymphocytic leukaemia: surface morphology in 21 cases as seen by scanning electron microscopy and comparison with B-type CLL and CLL in †prolymphocytoid' transformation. British Journal of Haematology, 1984, 57, 577-584.	2.5	8
56	The association between deaths from infection and mutations of the BRAF, FBXW7, NRAS and XPO1 genes: a report from the LRF CLL4 trial. Leukemia, 2021, 35, 2563-2569.	7.2	8
57	An unusual indication for splenectomy in hairy cell leukaemia: a report of three cases with persistent splenomegaly after chemoimmunotherapy. British Journal of Haematology, 2015, 171, 784-787.	2.5	7
58	A 3-decade multicenter European experience with cladribine as upfront treatment in 384 patients with hairy cell leukemia. Blood Advances, 2022, 6, 4224-4227.	5.2	7
59	Current treatment of hairy cell leukaemia. European Journal of Haematology, 1988, 41, 193-196.	2.2	6
60	Evaluation of serum markers in the LRF CLL4 trial: β ₂ -microglobulin but not serum free light chains, is an independent marker of overall survival. Leukemia and Lymphoma, 2016, 57, 2342-2350.	1.3	5
61	Quality of Life in the LRF CLL4 Trial Blood, 2005, 106, 2111-2111.	1.4	5
62	The effect of tetradecanoylâ€12, 13â€phorbol acetate on â€~hairy' cells. Scandinavian Journal of Haematology, 1984, 33, 301-308.	0.0	4
63	Combined analysis of IGHV mutations, telomere length and CD49d identifies long-term progression-free survivors in TP53 wild-type CLL treated with FCR-based therapies. Leukemia, 2022, 36, 271-274.	7.2	4
64	Gender as a Prognostic Factor in CLL. Biological Pointers to the Improved Outcome of Women Blood, 2004, 104, 957-957.	1.4	4
65	The Lack of Survival Differences in Randomised Trials in CLL May Be Related to the Effect of Second Line Therapies. A Report from the LRF CLL4 Trial Blood, 2006, 108, 304-304.	1.4	3
66	The changing face of chronic lymphocytic leukemia. Leukemia and Lymphoma, 2007, 48, 2283-2284.	1.3	2
67	The Clinical Presentation of CLL. Hematologic Malignancies, 2019, , 39-50.	0.2	2
68	Rituximab, Either As Single Agent or in Combination, Is Superior to Other Treatments in Terms of Response Rate and Progression-Free Survival (PFS) in Patients with Splenic Marginal Zone Lymphoma (SMZL). Blood, 2011, 118, 4986-4986.	1.4	2
69	Interferon as an alternative to purine analogues in the treatment of hairy cell leukaemia - response to BenzetÂal. British Journal of Haematology, 2010, 148, 665-666.	2.5	1
70	ZAP-70 Expression in Chronic Lymphocytic Leukemia: Correlation with Clinical and Biological Features Blood, 2004, 104, 1915-1915.	1.4	1
71	Drug Sensitivity by TRAC (DiSC) Assay as a Prognostic Factor for Patient Response in Untreated CLL: Results from the UK LRF CLL4 Trial Blood, 2006, 108, 303-303.	1.4	1
72	Telomere Length Is An Independent Predictor of Outcome After Therapy in CLL: Results From the UKCLL4 Trial,. Blood, 2011, 118, 3884-3884.	1.4	1

DANIEL CATOVSKY

#	Article	IF	CITATIONS
73	Familial multiple myeloma. Haematologica, 2005, 90, 3-4.	3.5	1
74	B-cell prolymphocytic leukemia and hairy cell leukemia: new advances in biology and treatment. International Journal of Hematologic Oncology, 2012, 1, 159-167.	1.6	0
75	B- Prolymphocytic Leukemia Shows Heterogeneous IgVH Mutational Status and Expression of ZAP-70 and CD38 Blood, 2004, 104, 2004-2004.	1.4	0
76	Gene Expression Reveals Two Distinct Biological Groups within T-Cell Prolymphocytic Leukaemia Blood, 2005, 106, 4366-4366.	1.4	0
77	Comparison of IgH Gene Rearrangement Configuration between Hairy Cell Leukemia (HCL) and Hairy Cell Leukemia Variant (HCL-v) Blood, 2005, 106, 4997-4997.	1.4	0
78	B-Cell Prolymphocytic Leukemia (B-PLL) and Chronic Lymphocytic Leukemia (CLL) Express Distinct Genomic Profiles Blood, 2005, 106, 4372-4372.	1.4	0
79	Combinations of ZAP-70, CD38 and IgVH Mutational Status as Predictors of Time to First Treatment in CLL Blood, 2005, 106, 711-711.	1.4	0
80	B- Cell Chronic Lymphocytic Leukaemia Complicated by Aggressive T-Cell Lymphoma: Clinical and Molecular Analysis of a Rare Variant of Richter's Syndrome Blood, 2005, 106, 4999-4999.	1.4	0
81	Baseline Characteristics Associated with Quality of Life in CLL Patients Requiring Therapy Blood, 2007, 110, 2062-2062.	1.4	0
82	Disease Burden of Chronic Lymphocytic Leukemia within the European Union Blood, 2007, 110, 5151-5151.	1.4	0
83	High Resolution Genomic Profiling Using Single Nucleotide Polymorphism Microarrays Reveals Novel Genomic Lesions in Hairy Cell Leukaemia and Hairy-Cell Leukaemia Variant. Blood, 2008, 112, 3136-3136.	1.4	0
84	Genome-Wide Profiling of DNA Copy Number Variation in CLL Cases Lacking 17p- (TP53) or 11q- (ATM) Abnormalities Selected from the CLL4 Study. Blood, 2008, 112, 3140-3140.	1.4	0
85	Gene Expression Profiling Classifies Splenic Marginal Zone Lymphoma and Hairy Cell Leukemia-Variant as Related Diseases That Are Distinct From Typical Hairy Cell Leukemia Blood, 2009, 114, 3467-3467.	1.4	0
86	The Outcome of CLL Patients with 97% Identity to Germline Is Inferior to Other â€~Mutated' Cases Defined by a 98% Cut off. Blood, 2011, 118, 2842-2842.	1.4	0
87	Deregulated Expression of HDAC9 in B-Cells Leads to Lymphoproliferative Disorders As Well As Germinal Center and Post-Germinal Center Derived Lymphomas. Blood, 2012, 120, 3505-3505.	1.4	0
88	ZAP70 Methylation Is An Independent Prognostic Biomarker For Front Line Therapy Of Chronic Lymphocytic Leukemia : Results From The UK LRF CLL4 Trial. Blood, 2013, 122, 4137-4137.	1.4	0
89	Early clinical trials in chronic lymphocytic leukaemia in the UK. British Journal of Haematology, 2020, 191, 535-541.	2.5	0