David Bialas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9587469/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Slipâ€Stacked Jâ€Aggregate Materials for Organic Solar Cells and Photodetectors. Advanced Materials, 2022, 34, e2104678.	21.0	77
2	Tuning Exciton Coupling of Merocyanine Nucleoside Dimers by RNA, DNA and GNA Double Helix Conformations. Angewandte Chemie - International Edition, 2022, 61, .	13.8	18
3	Tuning Exciton Coupling of Merocyanine Nucleoside Dimers by RNA, DNA and GNA Double Helix Conformations. Angewandte Chemie, 2022, 134, .	2.0	8
4	Supramolecular p/nâ€heterojunction of C ₆₀ â€functionalized bis(merocyanine) quadruple stack: A model system for charge carrier separation and recombination in organic solar cells. Natural Sciences, 2022, 2, .	2.1	0
5	Reversible fluorescence modulation through the photoisomerization of an azobenzene-bridged perylene bisimide cyclophane. Organic Chemistry Frontiers, 2021, 8, 1424-1430.	4.5	10
6	Perspectives in Dye Chemistry: A Rational Approach toward Functional Materials by Understanding the Aggregate State. Journal of the American Chemical Society, 2021, 143, 4500-4518.	13.7	149
7	Switching resonance character within merocyanine stacks and its impact on excited-state dynamics. CheM, 2021, 7, 715-725.	11.7	16
8	Innenrücktitelbild: Polymorphism in Squaraine Dye Aggregates by Selfâ€Assembly Pathway Differentiation: Panchromatic Tubular Dye Nanorods versus Jâ€Aggregate Nanosheets (Angew. Chem.) Tj ETQqC) 0 0.r gBT /	'Oværlock 10
9	Polymorphism in Squaraine Dye Aggregates by Selfâ€Assembly Pathway Differentiation: Panchromatic Tubular Dye Nanorods versus Jâ€Aggregate Nanosheets. Angewandte Chemie - International Edition, 2021, 60, 11949-11958.	13.8	58
10	An Efficient Narrowband Nearâ€infrared at 1040Ânm Organic Photodetector Realized by Intermolecular Charge Transfer Mediated Coupling Based on a Squaraine Dye. Advanced Materials, 2021, 33, e2100582.	21.0	88
11	Polymorphism in Squaraine Dye Aggregates by Selfâ€Assembly Pathway Differentiation: Panchromatic Tubular Dye Nanorods versus Jâ€Aggregate Nanosheets. Angewandte Chemie, 2021, 133, 12056-12065.	2.0	19
12	Folding and fluorescence enhancement with strong odd–even effect for a series of merocyanine dye oligomers. Chemical Science, 2021, 12, 8342-8352.	7.4	21
13	Unusual Non-Kasha Photophysical Behavior of Aggregates of Push–Pull Donor–Acceptor Chromophores. Journal of Physical Chemistry C, 2020, 124, 2146-2159.	3.1	22
14	Perylene Diimide-Based Hj- and hJ-Aggregates: The Prospect of Exciton Band Shape Engineering in Organic Materials. Journal of Physical Chemistry C, 2019, 123, 20567-20578.	3.1	91
15	Davydov Splitting in Squaraine Dimers. Journal of Physical Chemistry C, 2019, 123, 18734-18745.	3.1	41
16	Bis(merocyanine) Heteroâ€Foldaâ€Dimers: Evaluation of Exciton Coupling between Different Types of Ï€â€Stacked Chromphores. Chemistry - A European Journal, 2019, 25, 11294-11301.	3.3	11
17	Bis(merocyanine) Homoâ€Foldaâ€Dimers: Evaluation of Electronic and Spectral Changes in Wellâ€Defined Dye Aggregate Geometries. Chemistry - A European Journal, 2019, 25, 11285-11293.	3.3	11
18	Tunable Low-LUMO Boron-Doped Polycyclic Aromatic Hydrocarbons by General One-Pot C–H Borylations. Journal of the American Chemical Society, 2019, 141, 9096-9104.	13.7	103

DAVID BIALAS

#	Article	IF	CITATIONS
19	Defined Merocyanine Dye Stacks from a Dimer up to an Octamer by Spacer-Encoded Self-Assembly Approach. Journal of the American Chemical Society, 2019, 141, 7428-7438.	13.7	53
20	Discrete π-Stacks of Perylene Bisimide Dyes within Folda-Dimers: Insight into Long- and Short-Range Exciton Coupling. Journal of the American Chemical Society, 2018, 140, 9986-9995.	13.7	136
21	Exciton Coupling of Merocyanine Dyes from H- to J-type in the Solid State by Crystal Engineering. Nano Letters, 2017, 17, 1719-1726.	9.1	59
22	Structural and quantum chemical analysis of exciton coupling in homo- and heteroaggregate stacks of merocyanines. Nature Communications, 2016, 7, 12949.	12.8	58
23	Excitonâ€Vibrational Couplings in Homo―and Heterodimer Stacks of Perylene Bisimide Dyes within Cyclophanes: Studies on Absorption Properties and Theoretical Analysis. Chemistry - A European Journal, 2016, 22, 15011-15018.	3.3	17
24	Organic Semiconductors based on Dyes and Color Pigments. Advanced Materials, 2016, 28, 3615-3645.	21.0	377
25	Folding-induced exciton coupling in homo- and heterodimers of merocyanine dyes. Chemical Communications, 2016, 52, 3777-3780.	4.1	17
26	Spacerâ€Modulated Differentiation Between Selfâ€Assembly and Folding Pathways for Bichromophoric	3.3	27

Spacerâ€Modulated Differentiation Between Selfâ€Assembly and Folding Pathways for Bichromophoric Merocyanine Dyes. Chemistry - A European Journal, 2015, 21, 14851-14861. 3.326