
César FernÃ;ndez SÃ;nchez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9585141/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electrochemical impedance spectroscopy studies of polymer degradation: application to biosensor development. TrAC - Trends in Analytical Chemistry, 2005, 24, 37-48.	11.4	158
2	Disposable Noncompetitive Immunosensor for Free and Total Prostate-Specific Antigen Based on Capacitance Measurement. Analytical Chemistry, 2004, 76, 5649-5656.	6.5	121
3	Voltammetric monitoring of laccase-catalysed mediated reactions. Bioelectrochemistry, 2002, 58, 149-156.	4.6	110
4	Achieving Extremely Concentrated Aqueous Dispersions of Graphene Flakes and Catalytically Efficient Graphene-Metal Nanoparticle Hybrids with Flavin Mononucleotide as a High-Performance Stabilizer. ACS Applied Materials & Interfaces, 2015, 7, 10293-10307.	8.0	101
5	Colloidal gold as an electrochemical label of streptavidin–biotin interaction. Biosensors and Bioelectronics, 2000, 15, 315-321.	10.1	97
6	Electroanalytical Assessment of Heavy Metals in Waters with Bismuth Nanoparticle-Porous Carbon Paste Electrodes. Electrochimica Acta, 2015, 165, 155-161.	5.2	85
7	Screen-printed electrodes made of a bismuth nanoparticle porous carbon nanocomposite applied to the determination of heavy metalÂions. Mikrochimica Acta, 2016, 183, 617-623.	5.0	83
8	One-step immunostrip test for the simultaneous detection of free and total prostate specific antigen in serum. Journal of Immunological Methods, 2005, 307, 1-12.	1.4	81
9	Facile synthesis of porous bismuth–carbon nanocomposites for the sensitive detection of heavy metals. Journal of Materials Chemistry A, 2013, 1, 11410.	10.3	64
10	Discriminating the carboxylic groups from the total acidic sites in oxidized multi-wall carbon nanotubes by means of acid–base titration. Chemical Physics Letters, 2008, 462, 256-259.	2.6	62
11	Thin-film electrochemical sensor for diphenylamine detection using molecularly imprinted polymers. Analytica Chimica Acta, 2014, 809, 141-147.	5.4	60
12	AC voltammetric carbon paste-based enzyme immunosensors. Biosensors and Bioelectronics, 2000, 14, 917-924.	10.1	55
13	Electrochemical Paper-Based Biosensor Devices for Rapid Detection of Biomarkers. Sensors, 2020, 20, 967.	3.8	55
14	Electrochemical Nanocomposite-Derived Sensor for the Analysis of Chemical Oxygen Demand in Urban Wastewaters. Analytical Chemistry, 2015, 87, 2152-2160.	6.5	51
15	Adsorption of immunoglobulin G on carbon paste electrodes as a basis for the development of immunoelectrochemical devices. Biosensors and Bioelectronics, 1997, 12, 403-413.	10.1	50
16	Underpotential Depositionâ^'Anodic Stripping Voltammetric Detection of Copper at Gold Nanoparticle-Modified Ultramicroelectrode Arrays. Environmental Science & Technology, 2008, 42, 4877-4882.	10.0	48
17	Improving immunosensor performance through oriented immobilization of antibodies on carbon nanotube composite surfaces. Biosensors and Bioelectronics, 2013, 43, 274-280.	10.1	48
18	Quantitative impedimetric immunosensor for free and total prostate specific antigen based on a lateral flow assay format. Electrochemistry Communications, 2004, 6, 138-143.	4.7	44

#	Article	IF	CITATIONS
19	Flow injection analysis system based on amperometric thin-film transducers for free chlorine detection in swimming pool waters. Talanta, 2009, 77, 1739-1744.	5.5	44
20	Electrochemical devices for the detection of priority pollutants listed in the EU water framework directive. TrAC - Trends in Analytical Chemistry, 2016, 77, 186-202.	11.4	44
21	Comparative Voltammetric Behavior of Indigo Carmine at Screen-Printed Carbon Electrodes. Electroanalysis, 2002, 14, 665.	2.9	42
22	Polysilicon interdigitated electrodes as impedimetric sensors. Electrochemistry Communications, 2006, 8, 1239-1244.	4.7	42
23	3-Indoxyl Phosphate: an Alkaline Phosphatase Substrate for Enzyme Immunoassays with Voltammetric Detection. Electroanalysis, 1998, 10, 249-255.	2.9	40
24	Voltammetric studies of indigo adsorbed on pre-treated carbon paste electrodes. Electrochemistry Communications, 2000, 2, 776-781.	4.7	40
25	Ultramicroelectrode Array Based Sensors: A Promising Analytical Tool for Environmental Monitoring. Sensors, 2010, 10, 475-490.	3.8	40
26	Monitoring of malolactic fermentation in wine using an electrochemical bienzymatic biosensor for I-lactate with long term stability. Analytica Chimica Acta, 2016, 905, 126-133.	5.4	40
27	Competitive enzyme immunosensor developed on a renewable carbon paste electrode support. Analytica Chimica Acta, 1999, 402, 119-127.	5.4	39
28	Scalable fabrication of immunosensors based on carbon nanotube polymer composites. Nanotechnology, 2008, 19, 075102.	2.6	37
29	Plasma-activated multi-walled carbon nanotube–polystyrene composite substrates for biosensing. Nanotechnology, 2009, 20, 335501.	2.6	36
30	Gold nanoparticle-modified ultramicroelectrode arrays for biosensing: A comparative assessment. Bioelectrochemistry, 2009, 75, 176-181.	4.6	35
31	Label-Free Cancer Cell Detection with Impedimetric Transducers. Analytical Chemistry, 2009, 81, 10167-10171.	6.5	35
32	Carbon nanotube composite peptide-based biosensors as putative diagnostic tools for rheumatoid arthritis. Biosensors and Bioelectronics, 2011, 27, 113-118.	10.1	35
33	Integration of microelectronic chips in microfluidic systems on printed circuit board. Journal of Micromechanics and Microengineering, 2012, 22, 105022.	2.6	35
34	Composite planar electrode for sensing electrochemical oxygen demand. Analytica Chimica Acta, 2008, 607, 176-182.	5.4	34
35	Characterization of ultramicroelectrode arrays combining electrochemical techniques and optical microscopy imaging. Electrochimica Acta, 2007, 53, 729-736.	5.2	33
36	Selective Detection of Live Pathogens via Surface-Confined Electric Field Perturbation on Interdigitated Silicon Transducers. Analytical Chemistry, 2009, 81, 3830-3835.	6.5	33

César FernÃindez SÃinchez

#	Article	IF	CITATIONS
37	Aqueous Exfoliation of Transition Metal Dichalcogenides Assisted by DNA/RNA Nucleotides: Catalytically Active and Biocompatible Nanosheets Stabilized by Acid–Base Interactions. ACS Applied Materials & Interfaces, 2017, 9, 2835-2845.	8.0	33
38	Selective functionalisation of PDMS-based photonic lab on a chip for biosensing. Analyst, The, 2011, 136, 3496.	3.5	30
39	Peptideâ€Nanotube Biochips for Labelâ€Free Detection of Multiple Pathogens. Small, 2010, 6, 1092-1095.	10.0	29
40	Highly efficient silver-assisted reduction of graphene oxide dispersions at room temperature: mechanism, and catalytic and electrochemical performance of the resulting hybrids. Journal of Materials Chemistry A, 2014, 2, 7295-7305.	10.3	29
41	Biomimetic Architectures for the Impedimetric Discrimination of Influenza Virus Phenotypes. Advanced Functional Materials, 2013, 23, 254-262.	14.9	27
42	Biofunctionalized all-polymer photonic lab on a chip with integrated solid-state light emitter. Light: Science and Applications, 2015, 4, e271-e271.	16.6	27
43	Full-field photonic biosensors based on tunable bio-doped sol–gel glasses. Lab on A Chip, 2008, 8, 1185.	6.0	26
44	Algae–silica systems as functional hybrid materials. Journal of Materials Chemistry, 2010, 20, 9362-9369.	6.7	25
45	PDMS based photonic lab-on-a-chip for the selective optical detection of heavy metal ions. Analyst, The, 2013, 138, 839-844.	3.5	25
46	Impedance spectral fingerprint of E. coli cells on interdigitated electrodes: A new approach for label free and selective detection. Sensing and Bio-Sensing Research, 2016, 7, 100-106.	4.2	24
47	Gold cluster based electrocatalytic sensors for the detection of formaldehyde. Analytical Methods, 2015, 7, 538-542.	2.7	23
48	Optical Biosensor Based On Hollow Integrated Waveguides. Analytical Chemistry, 2008, 80, 3498-3501.	6.5	22
49	Diagnostics Using Multiplexed Electrochemical Readout Devices. Electroanalysis, 2014, 26, 1154-1170.	2.9	22
50	Patterning High-Aspect-Ratio Sol–Gel Structures by Microtransfer Molding. Chemistry of Materials, 2008, 20, 2662-2668.	6.7	21
51	Dual Photonic-Electrochemical Lab on a Chip for Online Simultaneous Absorbance and Amperometric Measurements. Analytical Chemistry, 2012, 84, 3546-3553.	6.5	21
52	Automated Determination of As(III) in Waters with an Electrochemical Sensor Integrated into a Modular Microfluidic System. ACS Sensors, 2019, 4, 3156-3165.	7.8	21
53	Self-validating lab-on-a-chip for monitoring enzyme-catalyzed biological reactions. Sensors and Actuators B: Chemical, 2016, 237, 16-23.	7.8	19
54	Gold interdigitated nanoelectrodes as a sensitive analytical tool for selective detection of electroactive species via redox cycling. Mikrochimica Acta, 2016, 183, 1633-1639.	5.0	19

#	Article	IF	CITATIONS
55	Robust l-malate bienzymatic biosensor to enable the on-site monitoring of malolactic fermentation of red wines. Analytica Chimica Acta, 2017, 954, 105-113.	5.4	17
56	Indirect Determination of Alkaline Phosphatase Based on the Amperometric Detection of Indigo Carmine at a Screen-Printed Electrode in a Flow System Analytical Sciences, 2002, 18, 1209-1213.	1.6	16
57	Electrical Readout of Protein Microarrays on Regular Glass Slides. Analytical Chemistry, 2011, 83, 1726-1731.	6.5	15
58	A microfluidic device for the automated electrical readout of low-density glass-slide microarrays. Biosensors and Bioelectronics, 2015, 74, 698-704.	10.1	15
59	Activation of two-dimensional MoS2 nanosheets by wet-chemical sulfur vacancy engineering for the catalytic reduction of nitroarenes and organic dyes. Applied Materials Today, 2020, 20, 100678.	4.3	15
60	Single-Cell Pathogen Detection with a Reverse-Phase Immunoassay on Impedimetric Transducers. Analytical Chemistry, 2009, 81, 7732-7736.	6.5	14
61	Microfluidic Modules with Integrated Solid-State Sensors for Reconfigurable Miniaturized Analysis Systems. ACS Omega, 2019, 4, 6192-6198.	3.5	13
62	Silane Nanopatterns via Gasâ€Phase Soft Lithography. Small, 2008, 4, 1076-1079.	10.0	12
63	Multiple actuation microvalves in wax microfluidics. Lab on A Chip, 2016, 16, 3969-3976.	6.0	12
64	Electric preconcentration and detection of latex beads with interdigitated electrodes. Applied Physics Letters, 2007, 90, 174104.	3.3	11
65	Local detection of enzymatic ion generation with polycrystalline silicon interdigitated electrodes and its application to biosensing. Applied Physics Letters, 2007, 90, 074102.	3.3	11
66	Compact Electrochemical Flow System for the Analysis of Environmental Pollutants. Electroanalysis, 2014, 26, 497-506.	2.9	11
67	Voltammetric monitoring of the interaction between streptavidin and biotinylated alkaline phosphatase through the enzymatic hydrolysis of 3-indoxyl phosphate. Analytica Chimica Acta, 2000, 417, 57-65.	5.4	10
68	Development and integration of xerogel polymeric absorbance micro-filters into lab-on-chip systems. Optics Express, 2012, 20, 23700.	3.4	10
69	Electrochemical Performance of Selfâ€Assembled Monolayer Gold Nanoparticleâ€Modified Ultramicroelectrode Array Architectures. Electroanalysis, 2012, 24, 635-642.	2.9	10
70	One-Step Patterning of Hybrid Xerogel Materials for the Fabrication of Disposable Solid-State Light Emitters. ACS Applied Materials & Interfaces, 2012, 4, 5029-5037.	8.0	9
71	In-field one-step measurement of dissolved chemical oxygen demand with an integrated screen-printed electrochemical sensor. Sensors and Actuators B: Chemical, 2022, 369, 132304.	7.8	9
72	Compact fluidic electrochemical sensor platform for on-line monitoring of chemical oxygen demand in urban wastewater. Chemical Engineering Journal, 2022, 449, 137837.	12.7	9

César FernÃindez SÃinchez

#	Article	IF	CITATIONS
73	Hollow waveguide-based full-field absorbance biosensor. Sensors and Actuators B: Chemical, 2009, 139, 143-149.	7.8	8
74	Carbon–Silica Composites to Produce Highly Robust Thinâ€Film Electrochemical Microdevices. Advanced Materials Technologies, 2017, 2, 1700163.	5.8	8
75	Decentralized analysis of water contaminants using compact (bio)electroanalytical tools. Current Opinion in Environmental Science and Health, 2019, 10, 47-56.	4.1	8
76	Miniature Gigahertz Acoustic Resonator and On-Chip Electrochemical Sensor: An Emerging Combination for Electroanalytical Microsystems. Analytical Chemistry, 2019, 91, 15959-15966.	6.5	8
77	Chemical Functionalization of Polysilicon Microparticles for Single-Cell Studies. Langmuir, 2011, 27, 8302-8308.	3.5	7
78	New fabrication method for producing reduced graphene oxide flexible electrodes by using a low-power visible laser diode engraving system. Nanotechnology, 2020, 31, 325402.	2.6	7
79	Array of individually addressable two-electrode electrochemical cells sharing a single counter/reference electrode for multiplexed enzyme activity measurements. Biosensors and Bioelectronics, 2022, 201, 113952.	10.1	7
80	Inhibition of Adsorbed Alkaline Phosphatase Activity by an Anti-Enzyme Antibody. An Approach to Carbon Paste Immunoelectrodes. Electroanalysis, 1999, 11, 1350-1354.	2.9	6
81	Electrochemically Active Thin Carbon Films with Enhanced Adhesion to Silicon Substrates. ACS Applied Materials & Interfaces, 2016, 8, 31092-31099.	8.0	6
82	Compact sampling device based on wax microfluidics. Sensors and Actuators B: Chemical, 2017, 251, 93-98.	7.8	5
83	Fluorophore-doped xerogel antiresonant reflecting optical waveguides. Optics Express, 2011, 19, 5026.	3.4	4
84	Synthesis of sol–gel SiO2-based materials using alkoxydisilane precursors: mechanisms and luminescence studies. Journal of Sol-Gel Science and Technology, 2015, 73, 417-427.	2.4	4
85	Metal Nanoparticle Carbon Gel Composites in Environmental Water Sensing Applications. Chemical Record, 2018, 18, 749-758.	5.8	4
86	Compact analytical flow system for the simultaneous determination of l-lactic and l-malic in red wines. Scientific Reports, 2020, 10, 19404.	3.3	4
87	Hybrid Technologies Combining Solid-State Sensors and Paper/Fabric Fluidics for Wearable Analytical Devices. Biosensors, 2021, 11, 303.	4.7	4
88	Gold nanoparticle-modified ultramicroelectrode arrays: A suitable transducer platform for the development of biosensors. Procedia Chemistry, 2009, 1, 666-669.	0.7	3
89	Bulk silica-based luminescent materials by sol-gel processing of non-conventional precursors. Applied Physics Letters, 2012, 101, 171908.	3.3	3
90	Reusable conductimetric array of interdigitated microelectrodes for the readout of low-density microarrays. Analytica Chimica Acta, 2014, 832, 44-50.	5.4	3

#	Article	IF	CITATIONS
91	Biofunctionalization of PDMS-based microfluidic systems. Protocol Exchange, 0, , .	0.3	3
92	Composites of porous carbon and copper-based nanoparticles for the electrochemical analysis of chemical oxygen demand. Materials Today Chemistry, 2022, 24, 100899.	3.5	3
93	Spermine-Induced Hybridization and Charge Inversion at the Diffuse Layer of a DNA-FET. Journal of Physical Chemistry B, 2008, 112, 7614-7617.	2.6	2
94	UV laser-induced high resolution cleaving of Si wafers for micro–nano devices and polymeric waveguide characterization. Applied Surface Science, 2011, 257, 5424-5428.	6.1	2
95	Miniaturized Flow-System Integrating Enzymatic Electrochemical Biosensors for Monitoring the Malolactic Fermentation of Red Wines. Proceedings (mdpi), 2017, 1, 787.	0.2	2
96	Multisensing Wearable Technology for Sweat Biomonitoring. Engineering Proceedings, 2021, 6, .	0.4	1
97	Bio and soft-imprinting lithography on bacterial cellulose films. Materials Today Chemistry, 2021, 21, 100535.	3.5	1
98	Multiple internal reflection photonic lab on a chip. , 2009, , .		0
99	Dual photonic electrochemical lab on a chip for lactate detection in continuous flow mode. , 2011, , .		0
100	Conductimetric transducer array for the readout of low-density protein microarrays. , 2013, , .		0
101	Stripping voltammetric detection of trace heavy metals using gold ultramicroelectrode arrays. , 2014, , ,		0
102	Wax microfluidics light-addressable valve with multiple actuation. Proceedings of SPIE, 2017, , .	0.8	0
103	Compact Microfluidic Platform with LED Light-Actuated Valves for Enzyme-Linked Immunosorbent Assay Automation. Biosensors, 2022, 12, 280.	4.7	0
104	3-Indoxyl Phosphate: an Alkaline Phosphatase Substrate for Enzyme Immunoassays with Voltammetric Detection. Electroanalysis, 1998, 10, 249-255.	2.9	0