
Bing Ding

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9584849/publications.pdf Version: 2024-02-01

BINC DINC

#	Article	IF	CITATIONS
1	Fabrication of a Covalent Triazine Framework Functional Interlayer for High-Performance Lithium–Sulfur Batteries. Nanomaterials, 2022, 12, 255.	4.1	7
2	A novel covalent organic framework with high-density imine groups for lithium storage as anode material in lithium-ion batteries. Journal of Materials Science, 2022, 57, 9980-9991.	3.7	18
3	Fabrication of the Oxygen Vacancy Amorphous MnO ₂ /Carbon Nanotube as Cathode for Advanced Aqueous Zincâ€lon Batteries. Energy Technology, 2021, 9, 2000769.	3.8	33
4	Nanoarchitectured porous carbons derived from ZIFs toward highly sensitive and selective QCM sensor for hazardous aromatic vapors. Journal of Hazardous Materials, 2021, 405, 124248.	12.4	36
5	Single Atomâ€Based Nanoarchitectured Electrodes for Highâ€Performance Lithium–Sulfur Batteries. Advanced Materials Interfaces, 2021, 8, 2002159.	3.7	22
6	Charge Storage Mechanism of an Anthraquinone-Derived Porous Covalent Organic Framework with Multiredox Sites as Anode Material for Lithium-Ion Battery. ACS Applied Energy Materials, 2021, 4, 11377-11385.	5.1	31
7	Physical Expansion of Layered Graphene Oxide Nanosheets by Chemical Vapor Deposition of Metal–Organic Frameworks and their Thermal Conversion into Nitrogenâ€Đoped Porous Carbons for Supercapacitor Applications. ChemSusChem, 2020, 13, 1629-1636.	6.8	18
8	Biomass-derived porous carbon electrodes for high-performance supercapacitors. Journal of Materials Science, 2020, 55, 5166-5176.	3.7	60
9	Atomic Layer Deposition of Single Atomic Cobalt as a Catalytic Interlayer for Lithium–Sulfur Batteries. ACS Applied Energy Materials, 2020, 3, 11206-11212.	5.1	25
10	MOF-derived hybrid nanoarchitectured carbons for gas discrimination of volatile aromatic hydrocarbons. Carbon, 2020, 168, 55-64.	10.3	20
11	Lithium-ion capacitor based on nanoarchitectured polydopamine/graphene composite anode and porous graphene cathode. Carbon, 2020, 167, 627-633.	10.3	29
12	Sandwich-Structured Ordered Mesoporous Polydopamine/MXene Hybrids as High-Performance Anodes for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 14993-15001.	8.0	48
13	Universal Access to Twoâ€Dimensional Mesoporous Heterostructures by Micelleâ€Directed Interfacial Assembly. Angewandte Chemie, 2020, 132, 19738-19743.	2.0	18
14	Universal Access to Twoâ€Dimensional Mesoporous Heterostructures by Micelleâ€Directed Interfacial Assembly. Angewandte Chemie - International Edition, 2020, 59, 19570-19575.	13.8	52
15	Boosting the Reversibility of Sodium Metal Anode via Heteroatomâ€Doped Hollow Carbon Fibers. Small, 2019, 15, e1902688.	10.0	76
16	Auto-programmed heteroarchitecturing: Self-assembling ordered mesoporous carbon between two-dimensional Ti3C2Tx MXene layers. Nano Energy, 2019, 65, 103991.	16.0	70
17	Advanced Nanoporous Material–Based QCM Devices: A New Horizon of Interfacial Mass Sensing Technology. Advanced Materials Interfaces, 2019, 6, 1900849.	3.7	69
18	Solid/Solid Interfacial Architecturing of Solid Polymer Electrolyte–Based All‣olid‣tate Lithium–Sulfur Batteries by Atomic Layer Deposition. Small, 2019, 15, e1903952.	10.0	62

BING DING

#	Article	IF	CITATIONS
19	Confined Pyrolysis of ZIFâ€8 Polyhedrons Wrapped with Graphene Oxide Nanosheets to Prepare 3D Porous Carbon Heterostructures. Small Methods, 2019, 3, 1900277.	8.6	31
20	Ultra-thin, highly graphitized carbon nanosheets into three-dimensional interconnected framework utilizing a ball mill mixing of precursors. Chemical Engineering Journal, 2019, 374, 1214-1220.	12.7	18
21	Compressed and Crumpled Porous Carbon Electrode for High Volumetric Performance Electrical Doubleâ€Layer Capacitors. Energy Technology, 2019, 7, 1900209.	3.8	9
22	Gram-Scale Synthesis of Bimetallic ZIFs and Their Thermal Conversion to Nanoporous Carbon Materials. Nanomaterials, 2019, 9, 1796.	4.1	13
23	Scalable synthesis of holey graphite nanosheets for supercapacitors with high volumetric capacitance. Nanoscale Horizons, 2019, 4, 526-530.	8.0	32
24	Titelbild: Confined Selfâ€Assembly in Twoâ€Dimensional Interlayer Space: Monolayered Mesoporous Carbon Nanosheets with Inâ€Plane Orderly Arranged Mesopores and a Highly Graphitized Framework (Angew. Chem. 11/2018). Angewandte Chemie, 2018, 130, 2777-2777.	2.0	2
25	Significant Effect of Pore Sizes on Energy Storage in Nanoporous Carbon Supercapacitors. Chemistry - A European Journal, 2018, 24, 6127-6132.	3.3	68
26	Selfâ€Templateâ€Directed Metal–Organic Frameworks Network and the Derived Honeycomb‣ike Carbon Flakes via Confinement Pyrolysis. Small, 2018, 14, e1704461.	10.0	44
27	Confined Selfâ€Assembly in Twoâ€Dimensional Interlayer Space: Monolayered Mesoporous Carbon Nanosheets with Inâ€Plane Orderly Arranged Mesopores and a Highly Graphitized Framework. Angewandte Chemie, 2018, 130, 2944-2948.	2.0	15
28	Confined Selfâ€Assembly in Twoâ€Dimensional Interlayer Space: Monolayered Mesoporous Carbon Nanosheets with Inâ€Plane Orderly Arranged Mesopores and a Highly Graphitized Framework. Angewandte Chemie - International Edition, 2018, 57, 2894-2898.	13.8	235
29	Hierarchically Porous Multilayered Carbon Barriers for Highâ€Performance Li–S Batteries. Chemistry - A European Journal, 2018, 24, 3768-3775.	3.3	43
30	Superlithiated Polydopamine Derivative for High-Capacity and High-Rate Anode for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 38101-38108.	8.0	59
31	Hierarchical porous carbons with layer-by-layer motif architectures from confined soft-template self-assembly in layered materials. Nature Communications, 2017, 8, 15717.	12.8	263
32	MoS ₂ â€Nanosheetâ€Decorated 2D Titanium Carbide (MXene) as Highâ€Performance Anodes for Sodiumâ€ion Batteries. ChemElectroChem, 2017, 4, 1560-1565.	3.4	123
33	Highly Conductive and Lightweight Composite Film as Polysulfide Reservoir for Highâ€Performance Lithium–Sulfur Batteries. ChemElectroChem, 2017, 4, 362-368.	3.4	31
34	Biomass derived carbon for energy storage devices. Journal of Materials Chemistry A, 2017, 5, 2411-2428.	10.3	632
35	Nitrogenâ€Doped Porous Carbon Nanospheres from Natural Sepia Ink: Easy Preparation and Extraordinary Capacitive Performance. ChemNanoMat, 2017, 3, 895-901.	2.8	17
36	Highly stable lithium ion capacitor enabled by hierarchical polyimide derived carbon microspheres combined with 3D current collectors. Journal of Materials Chemistry A, 2017, 5, 23283-23291.	10.3	94

BING DING

#	Article	IF	CITATIONS
37	Co ₃ O ₄ nanoneedle arrays as a multifunctional "super-reservoir―electrode for long cycle life Li–S batteries. Journal of Materials Chemistry A, 2017, 5, 250-257.	10.3	147
38	Pseudocapacitive materials for electrochemical capacitors: from rational synthesis to capacitance optimization. National Science Review, 2017, 4, 71-90.	9.5	215
39	Selfâ€&acrificial Templateâ€Directed Synthesis of Metal–Organic Frameworkâ€Derived Porous Carbon for Energyâ€&torage Devices. ChemElectroChem, 2016, 3, 668-674.	3.4	52
40	Interconnected core–shell pyrolyzed polyacrylonitrile@sulfur/carbon nanocomposites for rechargeable lithium–sulfur batteries. New Journal of Chemistry, 2016, 40, 7680-7686.	2.8	17
41	PAA/PEDOT:PSS as a multifunctional, water-soluble binder to improve the capacity and stability of lithium–sulfur batteries. RSC Advances, 2016, 6, 40650-40655.	3.6	81
42	A two-step etching route to ultrathin carbon nanosheets for high performance electrical double layer capacitors. Nanoscale, 2016, 8, 11136-11142.	5.6	53
43	An in situ confinement strategy to porous poly(3,4-ethylenedioxythiophene)/sulfur composites for lithium–sulfur batteries. RSC Advances, 2016, 6, 47858-47863.	3.6	9
44	Nanospace-confined synthesis of oriented porous carbon nanosheets for high-performance electrical double layer capacitors. Journal of Materials Chemistry A, 2016, 4, 16879-16885.	10.3	33
45	Heteroatomâ€Doped Porous Carbon Nanosheets: General Preparation and Enhanced Capacitive Properties. Chemistry - A European Journal, 2016, 22, 16668-16674.	3.3	17
46	Effect of Graphene Modified Cu Current Collector on the Performance of Li ₄ Ti ₅ O ₁₂ Anode for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 30926-30932.	8.0	81
47	Facile Synthesis of Nitrogenâ€Containing Mesoporous Carbon for Highâ€Performance Energy Storage Applications. Chemistry - A European Journal, 2016, 22, 4256-4262.	3.3	17
48	Synthesis and electrochemical performances of mixed-valence vanadium oxide/ordered mesoporous carbon composites for supercapacitors. RSC Advances, 2016, 6, 25056-25061.	3.6	15
49	General Strategy to Fabricate Ternary Metal Nitride/Carbon Nanofibers for Supercapacitors. ChemElectroChem, 2015, 2, 2020-2026.	3.4	19
50	Nanospace-Confinement Copolymerization Strategy for Encapsulating Polymeric Sulfur into Porous Carbon for Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2015, 7, 11165-11171.	8.0	49
51	Enhanced electrochemical performance of sulfur cathodes with a water-soluble binder. RSC Advances, 2015, 5, 13709-13714.	3.6	57
52	Crumpled Nitrogen-Doped Graphene for Supercapacitors with High Gravimetric and Volumetric Performances. ACS Applied Materials & amp; Interfaces, 2015, 7, 22284-22291.	8.0	77
53	Porous nitrogen and phosphorus co-doped carbon nanofiber networks for high performance electrical double layer capacitors. Journal of Materials Chemistry A, 2015, 3, 23268-23273.	10.3	82
54	Absorption mechanism of carbon-nanotube paper-titanium dioxide as a multifunctional barrier material for lithium-sulfur batteries. Nano Research, 2015, 8, 3066-3074.	10.4	95

BING DING

#	Article	IF	CITATIONS
55	Biomass-derived porous carbon materials with sulfur and nitrogen dual-doping for energy storage. Green Chemistry, 2015, 17, 1668-1674.	9.0	572
56	Enhanced Performance of Aqueous Sodiumâ€lon Batteries Using Electrodes Based on the NaTi ₂ (PO ₄) ₃ /MWNTs–Na _{0.44} MnO ₂ System. Energy Technology, 2014, 2, 705-712.	3.8	56
57	Enhanced Lithiumâ€Storage Performance from Threeâ€Dimensional MoS ₂ Nanosheets/Carbon Nanotube Paper. ChemElectroChem, 2014, 1, 1118-1125.	3.4	43
58	Porous nitrogen-doped hollow carbon spheres derived from polyaniline for high performance supercapacitors. Journal of Materials Chemistry A, 2014, 2, 5352-5357.	10.3	403
59	High performance lithium–sulfur batteries: advances and challenges. Journal of Materials Chemistry A, 2014, 2, 12662-12676.	10.3	269
60	Prussian blue analogues: a new class of anode materials for lithium ion batteries. Journal of Materials Chemistry A, 2014, 2, 5852-5857.	10.3	241
61	Synthesis of hydrogenated TiO ₂ –reduced-graphene oxide nanocomposites and their application in high rate lithium ion batteries. Journal of Materials Chemistry A, 2014, 2, 9150-9155.	10.3	35
62	Design of a Nitrogenâ€Doped, Carbonâ€Coated Li ₄ Ti ₅ O ₁₂ Nanocomposite with a Core–Shell Structure and Its Application for Highâ€Rate Lithiumâ€Ion Batteries. ChemPlusChem, 2014, 79, 128-133.	2.8	32
63	Preparation and electrochemical performances of porous polypyrrole film by interfacial polymerization. Journal of Applied Polymer Science, 2013, 127, 2938-2944.	2.6	16
64	Enhancing the electrochemical performance of Li1.2Ni0.2Mn0.6O2 by surface modification with nickel–manganese composite oxide. Journal of Solid State Electrochemistry, 2013, 17, 2087-2093.	2.5	15
65	Advanced Energy‣torage Architectures Composed of Spinel Lithium Metal Oxide Nanocrystal on Carbon Textiles. Advanced Energy Materials, 2013, 3, 1484-1489.	19.5	109
66	Fabrication of a sandwich structured electrode for high-performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2013, 1, 14280.	10.3	40
67	Encapsulating Sulfur into Hierarchically Ordered Porous Carbon as a Highâ€Performance Cathode for Lithium–Sulfur Batteries. Chemistry - A European Journal, 2013, 19, 1013-1019.	3.3	212
68	Sulfur embedded in metal organic framework-derived hierarchically porous carbon nanoplates for high performance lithium–sulfur battery. Journal of Materials Chemistry A, 2013, 1, 4490.	10.3	266
69	Chemically tailoring the nanostructure of graphenenanosheets to confine sulfur for high-performance lithium-sulfur batteries. Journal of Materials Chemistry A, 2013, 1, 1096-1101.	10.3	180
70	One-step electrochemical composite polymerization of polypyrrole integrated with functionalized graphene/carbon nanotubes nanostructured composite film for electrochemical capacitors. Electrochimica Acta, 2012, 62, 132-139.	5.2	36
71	Enhanced high-current capacitive behavior of graphene/CoAl-layered double hydroxide composites as electrode material for supercapacitors. Journal of Power Sources, 2012, 199, 395-401.	7.8	195
72	Effect of feeding ratios on the structure and electrochemical performance of graphite oxide/polypyrrole nanocomposites. Science Bulletin, 2011, 56, 2846-2852.	1.7	15

#	Article	IF	CITATIONS
73	Capacitance properties of graphite oxide/poly(3,4â€ethylene dioxythiophene) composites. Journal of Applied Polymer Science, 2011, 121, 892-898.	2.6	50