Jiaxi Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9584843/publications.pdf

Version: 2024-02-01

19 papers	396	759233 12 h-index	794594 19 g-index
Papero	5-13320120		S
19 all docs	19 docs citations	19 times ranked	324 citing authors

#	Article	IF	Citations
1	Wellâ€Defined Poly(Ester Amide)â€Based Homo†and Block Copolymers by Oneâ€Pot Organocatalytic Anionic Ringâ€Opening Copolymerization of <i>N</i> h:>â€Sulfonyl Aziridines and Cyclic Anhydrides. Angewandte Chemie - International Edition, 2021, 60, 6949-6954.	13.8	36
2	Wellâ€Defined Poly(Ester Amide)â€Based Homo―and Block Copolymers by Oneâ€Pot Organocatalytic Anionic Ringâ€Opening Copolymerization of <i>N</i> â€Sulfonyl Aziridines and Cyclic Anhydrides. Angewandte Chemie, 2021, 133, 7025-7030.	2.0	10
3	A Strained Ion Pair Permits Carbon Dioxide Fixation at Atmospheric Pressure by C–H H-Bonding Organocatalysis. Journal of Organic Chemistry, 2021, 86, 3422-3432.	3.2	22
4	Diblock dialternating terpolymers by one-step/one-pot highly selective organocatalytic multimonomer polymerization. Nature Communications, 2021, 12, 7124.	12.8	39
5	Chlorotropylium Promoted Conversions of Oximes to Amides and Nitriles. European Journal of Organic Chemistry, 2020, 2020, 311-315.	2.4	12
6	BrÃ, nsted base mediated one-pot synthesis of catechol-ended amphiphilic polysarcosine- $\langle i \rangle b < i \rangle$ -poly($\langle i \rangle N < i \rangle$ -butyl glycine) diblock copolypeptoids. Pure and Applied Chemistry, 2019, 91, 363-374.	1.9	2
7	Metallic organophosphate catalyzed bulk ring-opening polymerization. Polymer Chemistry, 2018, 9, 732-742.	3.9	15
8	Opposite-charge repulsive cation and anion pair cooperative organocatalysis in ring-opening polymerization. Polymer Chemistry, 2018, 9, 2183-2192.	3.9	23
9	Guanidinium as bifunctional organocatalyst for ring-opening polymerizations. Polymer, 2018, 154, 17-26.	3.8	13
10	Amphiphilic Polyoxazolineâ€ <i>block</i> êPolypeptoid Copolymers by Sequential Oneâ€Pot Ringâ€Opening Polymerizations. Macromolecular Chemistry and Physics, 2017, 218, 1600483.	2.2	12
11	Carbocation Organocatalysis in Interrupted Povarov Reactions to <i>cis</i> i>â€Fused Pyrano―and Furanobenzodihydropyrans. European Journal of Organic Chemistry, 2017, 2017, 3996-4003.	2.4	25
12	Squaramide and amine binary H-bond organocatalysis in polymerizations of cyclic carbonates, lactones, and lactides. Polymer Chemistry, 2017, 8, 7054-7068.	3.9	29
13	Tunable intramolecular H-bonding promotes benzoic acid activity in polymerization: inspiration from nature. Polymer Chemistry, 2017, 8, 6398-6406.	3.9	10
14	A preorganized dual H-bond donor promotes benzoic acid active in the polymerization of Î-valerolactone. Polymer Chemistry, 2017, 8, 5570-5579.	3.9	11
15	Dual Switching in Both RAFT and ROP for Generation of Asymmetric A ² A ¹ B ¹ B ² Type Tetrablock Quaterpolymers. Macromolecules, 2017, 50, 9295-9306.	4.8	27
16	Polymerization of trimethylene carbonates using organic phosphoric acids. Polymer Chemistry, 2016, 7, 5526-5535.	3.9	26
17	Traceless switch organocatalysis enables multiblock ring-opening copolymerizations of lactones, carbonates, and lactides: by a one plus one approach in one pot. Polymer Chemistry, 2016, 7, 6297-6308.	3.9	39
18	Internal Lewis pair enhanced H-bond donor: boronate-urea and tertiary amine co-catalysis in ring-opening polymerization. Polymer Chemistry, 2016, 7, 6843-6853.	3.9	26

#	Article	IF	CITATIONS
19	Three is company: dual intramolecular hydrogen-bond enabled carboxylic acid active in ring-opening polymerization. Polymer Chemistry, 2016, 7, 1111-1120.	3.9	19