Fernanda L Migliorini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9584766/publications.pdf

Version: 2024-02-01

430874 377865 1,199 37 18 34 g-index citations h-index papers 38 38 38 1529 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Sensing Materials: Nanofibers Produced by Electrospinning and Solution Blow Spinning. , 2023, , 521-541.		2
2	Electrochemical Immunosensor Made with Zeinâ€based Nanofibers for Onâ€site Detection of Aflatoxin B1. Electroanalysis, 2023, 35, .	2.9	4
3	Nanostructured scaffolds containing graphene oxide for nanomedicine applications. Polymers for Advanced Technologies, 2022, 33, 591-600.	3.2	6
4	Advances in 3D printed sensors for food analysis. TrAC - Trends in Analytical Chemistry, 2022, 154, 116672.	11.4	15
5	Novel Chemical Based on Green Composite Materials for. Environmental Chemistry for A Sustainable World, 2021, , 109-138.	0.5	O
6	A Review on the Role and Performance of Cellulose Nanomaterials in Sensors. ACS Sensors, 2021, 6, 2473-2496.	7.8	69
7	Nanofibers interfaces for biosensing: Design and applications. Sensors and Actuators Reports, 2021, 3, 100048.	4.4	35
8	Electrochemical sensor based on polyamide 6/polypyrrole electrospun nanofibers coated with reduced graphene oxide for malathion pesticide detection. Materials Research Express, 2020, 7, 015601.	1.6	40
9	Design of A Low-Cost and Disposable Paper-Based Immunosensor for the Rapid and Sensitive Detection of Aflatoxin B1. Chemosensors, 2020, 8, 87.	3.6	31
10	Electrospun nanofibers versus drop casting films for designing an electronic tongue: comparison of performance for monitoring geosmin and 2â€methylisoborneol in water samples. Polymers for Advanced Technologies, 2020, 31, 2075-2082.	3.2	8
11	GREEN-SYNTHESIZED GOLD NANOPARTICLES SUPPORTED ON CELLULOSE NANOWHISKERS FOR EASY-TO-INTERPRET COLORIMETRIC DETECTION OF CADMIUM (II). Cellulose Chemistry and Technology, 2020, 54, 407-413.	1.2	6
12	Tuning the Electrical Properties of Electrospun Nanofibers with Hybrid Nanomaterials for Detecting Isoborneol in Water Using an Electronic Tongue. Surfaces, 2019, 2, 432-443.	2.3	10
13	Detection of hydrogen peroxide (H2O2) using a colorimetric sensor based on cellulose nanowhiskers and silver nanoparticles. Carbohydrate Polymers, 2019, 212, 235-241.	10.2	112
14	Conductive electrospun nanofibers containing cellulose nanowhiskers and reduced graphene oxide for the electrochemical detection of mercury(II). Carbohydrate Polymers, 2019, 207, 747-754.	10.2	73
15	Urea impedimetric biosensing using electrospun nanofibers modified with zinc oxide nanoparticles. Applied Surface Science, 2018, 443, 18-23.	6.1	68
16	Voltammetric cadmium(II) sensor based onÂa fluorine doped tin oxide electrode modified with polyamide 6/chitosan electrospun nanofibers and gold nanoparticles. Mikrochimica Acta, 2017, 184, 1077-1084.	5.0	25
17	One-pot preparation of PEDOT:PSS-reduced graphene decorated with Au nanoparticles for enzymatic electrochemical sensing of H 2 O 2. Applied Surface Science, 2017, 407, 162-170.	6.1	79
18	Electrospinning-based (bio)sensors for food and agricultural applications: A review. TrAC - Trends in Analytical Chemistry, 2017, 91, 91-103.	11.4	204

#	Article	IF	Citations
19	Solution blow spun PMMA nanofibers wrapped with reduced graphene oxide as an efficient dye adsorbent. New Journal of Chemistry, 2017, 41, 9087-9094.	2.8	50
20	Influence of Supporting Electrolytes on RO 16 Dye Electrochemical Oxidation Using Boron Doped Diamond Electrodes. Materials Research, 2017, 20, 584-591.	1.3	6
21	Electrochemical oxidation of RB-19 dye using a highly BDD/Ti: Proposed pathway and toxicity. Journal of Environmental Chemical Engineering, 2016, 4, 3900-3909.	6.7	35
22	Efficiency study and mechanistic aspects in the Brilliant Green dye degradation using BDD/Ti electrodes. Diamond and Related Materials, 2016, 65, 5-12.	3.9	31
23	ELECTROCHEMICAL OXIDATION OF REACTIVE BLACK 5 AND BLUE 19 DYES USING A NON COMMERCIAL BORON-DOPED DIAMOND ELECTRODE. Quimica Nova, 2016, , .	0.3	2
24	Ecotoxicity Measurements of Degraded Textile Dye by Electrochemical Process Using Boron-Doped Diamond Electrodes. ECS Transactions, 2015, 64, 25-31.	0.5	1
25	Electrochemical removal of Reactive Black 5 azo dye using non-commercial boron-doped diamond film anodes. Electrochimica Acta, 2015, 178, 484-493.	5.2	43
26	Titanium Oxide Electrodeposition on Diamond/Ti Electrodes with Different Boron Dopings. ECS Transactions, 2014, 58, 47-52.	0.5	4
27	Influence of the sp2 Content on Boron Doped Diamond Electrodes Applied in the Textile Dye Electrooxidation. ECS Transactions, 2014, 58, 27-33.	0.5	1
28	Electrochemical oxidation of imazapyr with BDD electrode in titanium substrate. Chemosphere, 2014, 117, 596-603.	8.2	27
29	Doped diamond electrodes on titanium substrates with controlled sp2/sp3 hybridization at different boron levels. Thin Solid Films, 2014, 564, 97-103.	1.8	14
30	A comparative study of copper electrodeposition and photoelectrodeposition on boron doped diamond. Diamond and Related Materials, 2013, 38, 104-108.	3.9	3
31	Degradation of profenofos in an electrochemical flow reactor using boron-doped diamond anodes. Diamond and Related Materials, 2013, 32, 54-60.	3.9	18
32	Degradation of dipyrone in an electrochemical flow-by reactor using anodes of boron-doped diamond (BDD) supported on titanium. Journal of Electroanalytical Chemistry, 2013, 690, 89-95.	3.8	14
33	Electrochemical degradation of the insecticide methyl parathion using a boron-doped diamond film anode. Journal of Electroanalytical Chemistry, 2013, 702, 1-7.	3.8	27
34	Electrochemical and Morphology Study of the BDD/Ti Electrodes with Different Doping Levels. ECS Transactions, 2012, 43, 191-197.	0.5	5
35	Electrooxidation of the Reactive Orange 16 Dye Using Boron Doped Diamond and DSA Type Electrodes. ECS Transactions, 2012, 43, 89-96.	0.5	3
36	A comparative study of the electrochemical oxidation of the herbicide tebuthiuron using boron-doped diamond electrodes. Chemosphere, 2012, 88, 155-160.	8.2	51

#	Article	IF	CITATIONS
37	Anodic oxidation of wastewater containing the Reactive Orange 16 Dye using heavily boron-doped diamond electrodes. Journal of Hazardous Materials, 2011, 192, 1683-1689.	12.4	74