Dongqin Bi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9584233/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater thanÅ21%. Nature Energy, 2016, 1, .	39.5	1,719
2	A vacuum flash–assisted solution process for high-efficiency large-area perovskite solar cells. Science, 2016, 353, 58-62.	12.6	1,636
3	Effect of Different Hole Transport Materials on Recombination in CH ₃ NH ₃ PbI ₃ Perovskite-Sensitized Mesoscopic Solar Cells. Journal of Physical Chemistry Letters, 2013, 4, 1532-1536.	4.6	472
4	Electronic Structure of TiO ₂ /CH ₃ NH ₃ PbI ₃ Perovskite Solar Cell Interfaces. Journal of Physical Chemistry Letters, 2014, 5, 648-653.	4.6	432
5	Using a two-step deposition technique to prepare perovskite (CH3NH3PbI3) for thin film solar cells based on ZrO2 and TiO2 mesostructures. RSC Advances, 2013, 3, 18762.	3.6	405
6	Isomerâ€Pure Bisâ€PCBMâ€Assisted Crystal Engineering of Perovskite Solar Cells Showing Excellent Efficiency and Stability. Advanced Materials, 2017, 29, 1606806.	21.0	320
7	Suppressing defects through the synergistic effect of a Lewis base and a Lewis acid for highly efficient and stable perovskite solar cells. Energy and Environmental Science, 2018, 11, 3480-3490.	30.8	274
8	Efficient and stable CH3NH3PbI3-sensitized ZnO nanorod array solid-state solar cells. Nanoscale, 2013, 5, 11686.	5.6	271
9	Multifunctional molecular modulators for perovskite solar cells with over 20% efficiency and high operational stability. Nature Communications, 2018, 9, 4482.	12.8	266
10	Highâ€Performance Perovskite Solar Cells with Enhanced Environmental Stability Based on Amphiphileâ€Modified CH ₃ NH ₃ PbI ₃ . Advanced Materials, 2016, 28, 2910-2915.	21.0	258
11	Formation of Stable Mixed Guanidinium–Methylammonium Phases with Exceptionally Long Carrier Lifetimes for High-Efficiency Lead Iodide-Based Perovskite Photovoltaics. Journal of the American Chemical Society, 2018, 140, 3345-3351.	13.7	235
12	Over 20% PCE perovskite solar cells with superior stability achieved by novel and low-cost hole-transporting materials. Nano Energy, 2017, 41, 469-475.	16.0	232
13	Bipolar Membraneâ€Assisted Solar Water Splitting in Optimal pH. Advanced Energy Materials, 2016, 6, 1600100.	19.5	156
14	Transparent Cuprous Oxide Photocathode Enabling a Stacked Tandem Cell for Unbiased Water Splitting. Advanced Energy Materials, 2015, 5, 1501537.	19.5	149
15	Electronic Structure of CH ₃ NH ₃ PbX ₃ Perovskites: Dependence on the Halide Moiety. Journal of Physical Chemistry C, 2015, 119, 1818-1825.	3.1	127
16	Stable Layered 2D Perovskite Solar Cells with an Efficiency of over 19% via Multifunctional Interfacial Engineering. Journal of the American Chemical Society, 2021, 143, 3911-3917.	13.7	114
17	Adamantanes Enhance the Photovoltaic Performance and Operational Stability of Perovskite Solar Cells by Effective Mitigation of Interfacial Defect States. Advanced Energy Materials, 2018, 8, 1800275.	19.5	106
18	Unraveling the Effect of Pbl ₂ Concentration on Charge Recombination Kinetics in Perovskite Solar Cells. ACS Photonics, 2015, 2, 589-594.	6.6	97

Dongqin Bi

#	Article	IF	CITATIONS
19	A novel one-step synthesized and dopant-free hole transport material for efficient and stable perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 16330-16334.	10.3	87
20	Perovskitoidâ€Templated Formation of a 1D@3D Perovskite Structure toward Highly Efficient and Stable Perovskite Solar Cells. Advanced Energy Materials, 2021, 11, 2101018.	19.5	85
21	Dopantâ€Free Donor (D)–ï€â€"D–ï€â€"D Conjugated Holeâ€Transport Materials for Efficient and Stable Perovskite Solar Cells. ChemSusChem, 2016, 9, 2578-2585.	6.8	83
22	Recent Progress of Critical Interface Engineering for Highly Efficient and Stable Perovskite Solar Cells. Advanced Energy Materials, 2022, 12, .	19.5	78
23	Efficient solid state dye-sensitized solar cells based on an oligomer hole transport material and an organic dye. Journal of Materials Chemistry A, 2013, 1, 14467.	10.3	67
24	Improved Morphology Control Using a Modified Two-Step Method for Efficient Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2014, 6, 18751-18757.	8.0	62
25	Highâ€Efficiency Perovskite Solar Cells Employing a <i>S</i> , <i>N</i> â€Heteropentaceneâ€based D–A Holeâ€Transport Material. ChemSusChem, 2016, 9, 433-438.	6.8	61
26	Molecularly Tailored SnO ₂ /Perovskite Interface Enabling Efficient and Stable FAPbI ₃ Solar Cells. ACS Energy Letters, 2022, 7, 929-938.	17.4	52
27	Toward highly efficient and stable Sn ²⁺ and mixed Pb ²⁺ /Sn ²⁺ based halide perovskite solar cells through device engineering. Energy and Environmental Science, 2021, 14, 3256-3300.	30.8	49
28	Morphology Engineering: A Route to Highly Reproducible and High Efficiency Perovskite Solar Cells. ChemSusChem, 2017, 10, 1624-1630.	6.8	46
29	Review of Twoâ€Step Method for Lead Halide Perovskite Solar Cells. Solar Rrl, 2022, 6, .	5.8	44
30	HIGH-EFFICIENT SOLID-STATE PEROVSKITE SOLAR CELL WITHOUT LITHIUM SALT IN THE HOLE TRANSPORT MATERIAL. Nano, 2014, 09, 1440001.	1.0	34
31	New Approach for Preparation of Efficient Solid-State Dye-Sensitized Solar Cells by Photoelectrochemical Polymerization in Aqueous Micellar Solution. Journal of Physical Chemistry Letters, 2013, 4, 4026-4031.	4.6	29
32	In Situ Perovskitoid Engineering at SnO ₂ Interface toward Highly Efficient and Stable Formamidinium Lead Triiodide Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2021, 12, 10567-10573.	4.6	18
33	Hydrophobic Fluorinated Conjugated Polymer as a Multifunctional Interlayer for High-Performance Perovskite Solar Cells. ACS Photonics, 2021, 8, 3185-3192.	6.6	17
34	Multistrategy Toward Highly Efficient and Stable CsPbI ₂ Br Perovskite Solar Cells Based on Dopantâ€Free Poly(3â€Hexylthiophene). Solar Rrl, 2022, 6, .	5.8	16