## Eirini P Papapetrou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/958088/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling.<br>Nature Biotechnology, 2009, 27, 275-280.                                                                                                            | 17.5 | 3,047     |
| 2  | Modelling pathogenesis and treatment of familial dysautonomia using patient-specific iPSCs. Nature, 2009, 461, 402-406.                                                                                                                                   | 27.8 | 808       |
| 3  | A bioinformatic assay for pluripotency in human cells. Nature Methods, 2011, 8, 315-317.                                                                                                                                                                  | 19.0 | 410       |
| 4  | Safe harbours for the integration of new DNA in the human genome. Nature Reviews Cancer, 2012, 12, 51-58.                                                                                                                                                 | 28.4 | 391       |
| 5  | Conserved vertebrate <i>mir-451</i> provides a platform for Dicer-independent, Ago2-mediated microRNA biogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 15163-15168.                                | 7.1  | 389       |
| 6  | Genomic safe harbors permit high β-globin transgene expression in thalassemia induced pluripotent<br>stem cells. Nature Biotechnology, 2011, 29, 73-78.                                                                                                   | 17.5 | 277       |
| 7  | Stoichiometric and temporal requirements of Oct4, Sox2, Klf4, and c-Myc expression for efficient<br>human iPSC induction and differentiation. Proceedings of the National Academy of Sciences of the<br>United States of America, 2009, 106, 12759-12764. | 7.1  | 262       |
| 8  | The AIM2 inflammasome exacerbates atherosclerosis in clonal haematopoiesis. Nature, 2021, 592, 296-301.                                                                                                                                                   | 27.8 | 236       |
| 9  | Therapeutic Targeting of RNA Splicing Catalysis through Inhibition of Protein Arginine Methylation.<br>Cancer Cell, 2019, 36, 194-209.e9.                                                                                                                 | 16.8 | 184       |
| 10 | Gene Insertion Into Genomic Safe Harbors for Human Gene Therapy. Molecular Therapy, 2016, 24,<br>678-684.                                                                                                                                                 | 8.2  | 175       |
| 11 | TET proteins safeguard bivalent promoters from de novo methylation in human embryonic stem cells.<br>Nature Genetics, 2018, 50, 83-95.                                                                                                                    | 21.4 | 156       |
| 12 | Patient-derived induced pluripotent stem cells in cancer research and precision oncology. Nature Medicine, 2016, 22, 1392-1401.                                                                                                                           | 30.7 | 131       |
| 13 | Functional analysis of a chromosomal deletion associated with myelodysplastic syndromes using isogenic human induced pluripotent stem cells. Nature Biotechnology, 2015, 33, 646-655.                                                                     | 17.5 | 130       |
| 14 | miR-371-3 Expression Predicts Neural Differentiation Propensity in Human Pluripotent Stem Cells. Cell<br>Stem Cell, 2011, 8, 695-706.                                                                                                                     | 11.1 | 126       |
| 15 | Stage-Specific Human Induced Pluripotent Stem Cells Map the Progression of Myeloid Transformation to Transplantable Leukemia. Cell Stem Cell, 2017, 20, 315-328.e7.                                                                                       | 11.1 | 114       |
| 16 | A Genetic Strategy for Single and Combinatorial Analysis of miRNA Function in Mammalian<br>Hematopoietic Stem Cells. Stem Cells, 2010, 28, 287-296.                                                                                                       | 3.2  | 77        |
| 17 | Generation of transgene-free human induced pluripotent stem cells with an excisable single polycistronic vector. Nature Protocols, 2011, 6, 1251-1273.                                                                                                    | 12.0 | 67        |
| 18 | A method to sequence and quantify DNA integration for monitoring outcome in gene therapy. Nucleic<br>Acids Research, 2011, 39, e72-e72.                                                                                                                   | 14.5 | 64        |

EIRINI P PAPAPETROU

| #  | Article                                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Transcriptional Activation by Oct4 Is Sufficient for the Maintenance and Induction of Pluripotency.<br>Cell Reports, 2012, 1, 99-109.                                                                                                   | 6.4  | 61        |
| 20 | SF3B1 mutations induce R-loop accumulation and DNA damage in MDS and leukemia cells with therapeutic implications. Leukemia, 2020, 34, 2525-2530.                                                                                       | 7.2  | 61        |
| 21 | Harnessing endogenous miR-181a to segregate transgenic antigen receptor expression in developing<br>versus post-thymic T cells in murine hematopoietic chimeras. Journal of Clinical Investigation, 2009,<br>119, 157-68.               | 8.2  | 51        |
| 22 | Modulation of the NLRP3 inflammasome by Sars-CoV-2 Envelope protein. Scientific Reports, 2021, 11, 24432.                                                                                                                               | 3.3  | 51        |
| 23 | Efficient genome editing in hematopoietic stem cells with helper-dependent Ad5/35 vectors expressing<br>site-specific endonucleases under microRNA regulation. Molecular Therapy - Methods and Clinical<br>Development, 2015, 2, 14057. | 4.1  | 49        |
| 24 | Dissecting the Contributions of Cooperating Gene Mutations to Cancer Phenotypes and Drug Responses with Patient-Derived iPSCs. Stem Cell Reports, 2018, 10, 1610-1624.                                                                  | 4.8  | 43        |
| 25 | Sequential CRISPR gene editing in human iPSCs charts the clonal evolution of myeloid leukemia and identifies early disease targets. Cell Stem Cell, 2021, 28, 1074-1089.e7.                                                             | 11.1 | 37        |
| 26 | Induced pluripotent stem cells, past and future. Science, 2016, 353, 991-992.                                                                                                                                                           | 12.6 | 34        |
| 27 | Oxidized Phospholipids Promote NETosis and Arterial Thrombosis in LNK(SH2B3) Deficiency.<br>Circulation, 2021, 144, 1940-1954.                                                                                                          | 1.6  | 33        |
| 28 | Acute Myeloid Leukemia iPSCs Reveal a Role for RUNX1 in the Maintenance of Human Leukemia Stem<br>Cells. Cell Reports, 2020, 31, 107688.                                                                                                | 6.4  | 31        |
| 29 | Modeling blood diseases with human induced pluripotent stem cells. DMM Disease Models and Mechanisms, 2019, 12, .                                                                                                                       | 2.4  | 23        |
| 30 | Escape Mutations, Ganciclovir Resistance, and Teratoma Formation in Human iPSCs Expressing an<br>HSVtk Suicide Gene. Molecular Therapy - Nucleic Acids, 2016, 5, e284.                                                                  | 5.1  | 21        |
| 31 | MICA/B antibody induces macrophage-mediated immunity against acute myeloid leukemia. Blood, 2022, 139, 205-216.                                                                                                                         | 1.4  | 19        |
| 32 | Integrative RNA-omics Discovers <i>GNAS</i> Alternative Splicing as a Phenotypic Driver of Splicing<br>Factor–Mutant Neoplasms. Cancer Discovery, 2022, 12, 836-855.                                                                    | 9.4  | 19        |
| 33 | Modeling myeloid malignancies with patient-derived iPSCs. Experimental Hematology, 2019, 71, 77-84.                                                                                                                                     | 0.4  | 18        |
| 34 | Derivation of genetically modified human pluripotent stem cells with integrated transgenes at unique mapped genomic sites. Nature Protocols, 2011, 6, 1274-1289.                                                                        | 12.0 | 12        |
| 35 | Restoring RUNX1 deficiency in <i>RUNX1</i> familial platelet disorder by inhibiting its degradation.<br>Blood Advances, 2021, 5, 687-699.                                                                                               | 5.2  | 12        |
| 36 | Factors affecting the long-term response to tacrolimus in renal transplant patients: Pharmacokinetic and pharmacogenetic approach. International Journal of Medical Sciences, 2010, 7, 94-100.                                          | 2.5  | 11        |

EIRINI P PAPAPETROU

| #  | Article                                                                                                                                                                                                | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Investigation of clinical interaction between omeprazole and tacrolimus in CYP3A5 non-expressors, renal transplant recipients. Therapeutics and Clinical Risk Management, 2010, 6, 265.                | 2.0 | 10        |
| 38 | Therapeutic discovery for marrow failure with MDS predisposition using pluripotent stem cells. JCI Insight, 2019, 4, .                                                                                 | 5.0 | 10        |
| 39 | A Cell Engineering Strategy to Enhance the Safety of Stem Cell Therapies. Cell Reports, 2014, 8, 1677-1685.                                                                                            | 6.4 | 9         |
| 40 | Reconstructing blood from induced pluripotent stem cells. F1000 Medicine Reports, 2010, 2, .                                                                                                           | 2.9 | 9         |
| 41 | Tacrolimus and 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors: An interaction study in CYP3A5 non-expressors, renal transplant recipients. Indian Journal of Pharmacology, 2011, 43, 385.  | 0.7 | 8         |
| 42 | The Polycomb Group Protein L3MBTL1 Represses a SMAD5-Mediated Hematopoietic Transcriptional<br>Program in Human Pluripotent Stem Cells. Stem Cell Reports, 2015, 4, 658-669.                           | 4.8 | 7         |
| 43 | Modeling Leukemia with Human Induced Pluripotent Stem Cells. Cold Spring Harbor Perspectives in<br>Medicine, 2019, 9, a034868.                                                                         | 6.2 | 7         |
| 44 | Patient-specific MDS-RS iPSCs define the mis-spliced transcript repertoire and chromatin landscape of<br><i>SF3B1</i> -mutant HSPCs. Blood Advances, 2022, 6, 2992-3005.                               | 5.2 | 7         |
| 45 | Studying clonal evolution of myeloid malignancies using induced pluripotent stem cells. Current<br>Opinion in Hematology, 2021, 28, 50-56.                                                             | 2.5 | 6         |
| 46 | Gene and Cell Therapy for β-Thalassemia and Sickle Cell Disease with Induced Pluripotent Stem Cells<br>(iPSCs): The Next Frontier. Advances in Experimental Medicine and Biology, 2017, 1013, 219-240. | 1.6 | 5         |
| 47 | Engineering of targeted megabase-scale deletions in human induced pluripotent stem cells.<br>Experimental Hematology, 2020, 87, 25-32.                                                                 | 0.4 | 5         |
| 48 | CARs Move To the Fast Lane. Molecular Therapy, 2014, 22, 477-478.                                                                                                                                      | 8.2 | 4         |
| 49 | Studying leukemia stem cell properties and vulnerabilities with human iPSCs. Stem Cell Research, 2021, 50, 102117.                                                                                     | 0.7 | 3         |
| 50 | The Activated TGFÎ <sup>2</sup> Pathway in Shwachman Diamond Syndrome Impairs Hematopoiesis and Is<br>Down-Regulated By Deletion of 7q. Blood, 2017, 130, 875-875.                                     | 1.4 | 3         |
| 51 | FA iPS: correction or reprogramming first?. Blood, 2012, 119, 5341-5342.                                                                                                                               | 1.4 | 2         |
| 52 | Reprogramming and cancer. Stem Cell Research, 2021, 52, 102249.                                                                                                                                        | 0.7 | 2         |
| 53 | Isogenic iPSC Models of SRSF2-Mutant Myelodysplastic Syndrome Capture Disease Phenotypes, Splicing<br>Defects and Drug Responses. Blood, 2016, 128, 962-962.                                           | 1.4 | 2         |
| 54 | LiPS-A3S, a human genomic site for robust expression of inserted transgenes. Molecular Therapy -<br>Nucleic Acids, 2016, 5, e394.                                                                      | 5.1 | 1         |

EIRINI P PAPAPETROU

| #  | Article                                                                                                                                                                                       | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Modeling Leukemia Stem Cells with Patient-Derived Induced Pluripotent Stem Cells. Methods in<br>Molecular Biology, 2021, 2185, 411-422.                                                       | 0.9  | 1         |
| 56 | Modeling myeloid malignancies with human induced pluripotent stem cells. Experimental Hematology, 2015, 43, S39.                                                                              | 0.4  | 0         |
| 57 | Targeting a Novel Epigenetic Silencing Mechanism to Efficiently Upregulate Fetal Globin Gene<br>Expression. Blood, 2011, 118, 352-352.                                                        | 1.4  | 0         |
| 58 | IPS Cells From Del(7q)-MDS Patients Display Impaired Proliferation and Hematopoietic Commitment.<br>Blood, 2012, 120, 174-174.                                                                | 1.4  | 0         |
| 59 | An iPSC-Based Model Of MDS For Phenotype-Driven Gene and Drug Discovery. Blood, 2013, 122, 859-859.                                                                                           | 1.4  | 0         |
| 60 | Chromosome 7q Hemizygosity Recapitulates MDS-Related Cellular Phenotypes In Genetically<br>Engineered Human Pluripotent Stem Cells. Blood, 2013, 122, 862-862.                                | 1.4  | 0         |
| 61 | Isogenic MDS-RS Patient-Derived iPSCs Define the Mis-Spliced Transcript Repertoire and Chromatin<br>Landscape of SF3B1-Mutant Hematopoietic Stem/Progenitor Cells. Blood, 2021, 138, 147-147. | 1.4  | 0         |
| 62 | MDS/AML with del5q: An acquired "laminopathy�. Cell Stem Cell, 2022, 29, 498-499.                                                                                                             | 11.1 | 0         |