## Stefano Lupi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/958050/publications.pdf Version: 2024-02-01



STEEANO LUDI

| #  | Article                                                                                                                                                                                           | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Terahertz Spectroscopic Analysis in Protein Dynamics: Current Status. Radiation, 2022, 2, 100-123.                                                                                                | 1.4  | 21        |
| 2  | Oxygenâ€Ðriven Metal–Insulator Transition in SrNbO <sub>3</sub> Thin Films Probed by Infrared<br>Spectroscopy. Advanced Electronic Materials, 2022, 8, .                                          | 5.1  | 6         |
| 3  | Infrared plasmons in ultrahigh conductive PdCoO2 metallic oxide. Communications Physics, 2022, 5, .                                                                                               | 5.3  | 3         |
| 4  | Structural anisotropy in three dimensional macroporous graphene: A polarized XANES investigation.<br>Diamond and Related Materials, 2021, 111, 108171.                                            | 3.9  | 7         |
| 5  | Detection of volatile organic compounds: From chemical gas sensors to terahertz spectroscopy.<br>Reviews in Analytical Chemistry, 2021, 40, 33-57.                                                | 3.2  | 37        |
| 6  | Optical Properties of Stanene-like Nanosheets on Al <sub>2</sub> O <sub>3</sub> (0001): Implications for Xene Photonics. ACS Applied Nano Materials, 2021, 4, 2351-2356.                          | 5.0  | 7         |
| 7  | Virus recognition with terahertz radiation: drawbacks and potentialities. JPhys Photonics, 2021, 3, 032001.                                                                                       | 4.6  | 13        |
| 8  | Terahertz as a Frontier Area for Science and Technology. Condensed Matter, 2021, 6, 23.                                                                                                           | 1.8  | 7         |
| 9  | Customâ€Built Graphene Acousticâ€Absorbing Aerogel for Audio Signal Recognition. Advanced Materials<br>Interfaces, 2021, 8, 2100227.                                                              | 3.7  | 2         |
| 10 | Performance Evaluation of a THz Pulsed Imaging System: Point Spread Function, Broadband THz Beam Visualization and Image Reconstruction. Applied Sciences (Switzerland), 2021, 11, 562.           | 2.5  | 19        |
| 11 | Disordered photonics behavior from terahertz to ultraviolet of a three-dimensional graphene<br>network. NPG Asia Materials, 2021, 13, .                                                           | 7.9  | 10        |
| 12 | Low energy electrodynamics of CrI3 layered ferromagnet. Scientific Reports, 2021, 11, 23405.                                                                                                      | 3.3  | 12        |
| 13 | Experimental signature of a topological quantum dot. Nanoscale, 2020, 12, 22817-22825.                                                                                                            | 5.6  | 15        |
| 14 | Broadband Anisotropic Optical Properties of the Terahertz Generator HMQ-TMS Organic Crystal.<br>Condensed Matter, 2020, 5, 47.                                                                    | 1.8  | 15        |
| 15 | Graphene Aerogels for Ultrabroadband Thermoacoustics. Physical Review Applied, 2020, 14, .                                                                                                        | 3.8  | 2         |
| 16 | A novel approach for green synthesis of WO <sub>3</sub> nanomaterials and their highly selective chemical sensing properties. Journal of Materials Chemistry A, 2020, 8, 20373-20385.             | 10.3 | 35        |
| 17 | Fabrication and spectroscopic characterization of graphene transparent electrodes on flexible cyclo-olefin substrates for terahertz electro-optic applications. Nanotechnology, 2020, 31, 364006. | 2.6  | 15        |
|    | Terahertz Tuning of Dirac Plasmons in <mml:math <="" td="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td></td><td></td></mml:math>                                                           |      |           |

18 display="inline"><mml:mrow><mml:mrow><mml:mrow><mml:mi>Bi</mml:mi></mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mm

Stefano Lupi

| #  | Article                                                                                                                                                                                | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Proximity Array Device: A Novel Photon Detector Working in Long Wavelengths. Condensed Matter, 2020, 5, 33.                                                                            | 1.8  | 10        |
| 20 | Emerging Dirac materials for THz plasmonics. Applied Materials Today, 2020, 20, 100732.                                                                                                | 4.3  | 14        |
| 21 | Spatially Resolved Spectral Imaging by A THz-FEL. Condensed Matter, 2020, 5, 38.                                                                                                       | 1.8  | 5         |
| 22 | THz Pulsed Imaging in Biomedical Applications. Condensed Matter, 2020, 5, 25.                                                                                                          | 1.8  | 70        |
| 23 | Retarding Ostwald Ripening to Directly Cast 3D Porous Graphene Oxide Bulks at Open Ambient<br>Conditions. ACS Nano, 2020, 14, 6249-6257.                                               | 14.6 | 37        |
| 24 | Angular Dependence of Copper Surface Damage Induced by an Intense Coherent THz Radiation Beam.<br>Condensed Matter, 2020, 5, 16.                                                       | 1.8  | 4         |
| 25 | Tunable Vortex Dynamics in Proximity Junction Arrays: A Possible Accurate and Sensitive 2D THz<br>Detector. Acta Physica Polonica A, 2020, 137, 17-20.                                 | 0.5  | 7         |
| 26 | Characterization of volatile organic compounds (VOCs) in their liquid-phase by terahertz time-domain spectroscopy. Biomedical Optics Express, 2020, 11, 1.                             | 2.9  | 16        |
| 27 | Ultimate Photo-Thermo-Acoustic Efficiency of Graphene Aerogels. Scientific Reports, 2019, 9, 13386.                                                                                    | 3.3  | 11        |
| 28 | Overcoming the thermal regime for the electric-field driven Mott transition in vanadium sesquioxide.<br>Nature Communications, 2019, 10, 1159.                                         | 12.8 | 32        |
| 29 | MoO3 films grown on polycrystalline Cu: Morphological, structural, and electronic properties.<br>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2019, 37, .   | 2.1  | 15        |
| 30 | Hydrogen Bonding Features in Cholinium-Based Protic Ionic Liquids from Molecular Dynamics<br>Simulations. Journal of Physical Chemistry B, 2018, 122, 2635-2645.                       | 2.6  | 36        |
| 31 | Optical Conductivity of Two-Dimensional Silicon: Evidence of Dirac Electrodynamics. Nano Letters, 2018, 18, 7124-7132.                                                                 | 9.1  | 34        |
| 32 | Mid-Infrared Plasmonic Excitation in Indium Tin Oxide Microhole Arrays. ACS Photonics, 2018, 5, 2431-2436.                                                                             | 6.6  | 22        |
| 33 | Highâ€Efficiency and Low Distortion Photoacoustic Effect in 3D Graphene Sponge. Advanced Functional<br>Materials, 2018, 28, 1702652.                                                   | 14.9 | 35        |
| 34 | Pressure effects on α-synuclein amyloid fibrils: An experimental investigation on their dissociation and reversible nature. Archives of Biochemistry and Biophysics, 2017, 627, 46-55. | 3.0  | 11        |
| 35 | Terahertz plasmonic excitations in Bi <sub>2</sub> Se <sub>3</sub> topological insulator. Journal of Physics Condensed Matter, 2017, 29, 183002.                                       | 1.8  | 19        |
| 36 | Terahertz and mid-infrared plasmons in three-dimensional nanoporous graphene. Nature<br>Communications, 2017, 8, 14885.                                                                | 12.8 | 58        |

STEFANO LUPI

| #  | Article                                                                                                                                                                                                                             | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | High-Pressure-Driven Reversible Dissociation of α-Synuclein Fibrils Reveals Structural Hierarchy.<br>Biophysical Journal, 2017, 113, 1685-1696.                                                                                     | 0.5  | 16        |
| 38 | Two-Dimensional Hallmark of Highly Interconnected Three-Dimensional Nanoporous Graphene. ACS<br>Omega, 2017, 2, 3691-3697.                                                                                                          | 3.5  | 32        |
| 39 | TeraFERMI: A Superradiant Beamline for THz Nonlinear Studies at the FERMI Free Electron Laser<br>Facility. Synchrotron Radiation News, 2017, 30, 36-39.                                                                             | 0.8  | 12        |
| 40 | Photo-acoustic converter for THz detection based on 3-dimensional graphene. , 2017, , .                                                                                                                                             |      | 0         |
| 41 | Photoinduced terahertz dynamics in BizSes topological insulator. , 2017, , .                                                                                                                                                        |      | 0         |
| 42 | Strong nonlinear terahertz response induced by Dirac surface states in Bi2Se3 topological insulator.<br>Nature Communications, 2016, 7, 11421.                                                                                      | 12.8 | 124       |
| 43 | Topologically protected Dirac plasmons and their evolution across the quantum phase transition in a<br>(Bi <sub>1â^*x</sub> In <sub>x</sub> ) <sub>2</sub> Se <sub>3</sub> topological insulator. Nanoscale,<br>2016, 8, 4667-4671. | 5.6  | 13        |
| 44 | Terahertz and Infrared Plasmonics with Unconventional Materials. , 2016, , 4057-4070.                                                                                                                                               |      | 0         |
| 45 | Interaction and dynamics of ionic liquids based on choline and amino acid anions. Journal of Chemical Physics, 2015, 142, 234502.                                                                                                   | 3.0  | 47        |
| 46 | Plasmon–Phonon Interactions in Topological Insulator Microrings. Advanced Optical Materials, 2015,<br>3, 1257-1263.                                                                                                                 | 7.3  | 72        |
| 47 | Observation of Magnetoplasmons in Bi <sub>2</sub> Se <sub>3</sub> Topological Insulator. ACS Photonics, 2015, 2, 1231-1235.                                                                                                         | 6.6  | 48        |
| 48 | Resonating Terahertz Response of Periodic Arrays of Subwavelength Apertures. Plasmonics, 2015, 10,<br>45-50.                                                                                                                        | 3.4  | 19        |
| 49 | Squeezing Terahertz Light into Nanovolumes: Nanoantenna Enhanced Terahertz Spectroscopy (NETS)<br>of Semiconductor Quantum Dots. Nano Letters, 2015, 15, 386-391.                                                                   | 9.1  | 86        |
| 50 | Terahertz plasmonic excitations in Bi <inf>2</inf> Se <inf>3</inf> topological<br>insulator. , 2014, , .                                                                                                                            |      | 0         |
| 51 | Superconductivity-Induced Transparency in Terahertz Metamaterials. ACS Photonics, 2014, 1, 570-575.                                                                                                                                 | 6.6  | 47        |
| 52 | Optical Properties of a Vibrationally Modulated Solid State Mott Insulator. Scientific Reports, 2014, 4, 3823.                                                                                                                      | 3.3  | 40        |
| 53 | Observation of Dirac plasmons in a topological insulator. Nature Nanotechnology, 2013, 8, 556-560.                                                                                                                                  | 31.5 | 332       |
| 54 | The TeraFERMI terahertz source at the seeded FERMI free-electron-laser facility. Review of Scientific Instruments, 2013, 84, 022702.                                                                                                | 1.3  | 39        |

Stefano Lupi

| #  | Article                                                                                                                                                             | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Field distribution and quality factor of surface plasmon resonances of metal meshes for mid-infrared sensing. Plasmonics, 2013, 8, 851-858.                         | 3.4 | 10        |
| 56 | Mid-Infrared Surface Plasmon Polariton Sensors Resonant with the Vibrational Modes of Phospholipid Layers. Journal of Physical Chemistry C, 2013, 117, 19119-19126. | 3.1 | 22        |
| 57 | The SPARC linear accelerator based terahertz source. Applied Physics Letters, 2013, 102, .                                                                          | 3.3 | 57        |
| 58 | Characterization of the THz radiation source at the Frascati linear accelerator. Review of Scientific Instruments, 2013, 84, 022703.                                | 1.3 | 57        |
| 59 | Dark and bright surface plasmon resonances of metal meshes for mid-infrared sensing at the nanoscale. , 2012, , .                                                   |     | 0         |
| 60 | Optical conductivity of bismuth-based topological insulators. Physical Review B, 2012, 86, .                                                                        | 3.2 | 92        |
| 61 | Structure–activity relationships of Candida rugosa lipase immobilized on polylactic acid<br>nanoparticles. Soft Matter, 2011, 7, 2653.                              | 2.7 | 56        |
| 62 | Terahertz Spectroscopy of Novel Superconductors. Advances in Condensed Matter Physics, 2011, 2011, 1-9.                                                             | 1.1 | 6         |
| 63 | Substrateless micrometric metal mesh for mid-infrared plasmonic sensors. Applied Physics A:<br>Materials Science and Processing, 2011, 103, 627-630.                | 2.3 | 7         |
| 64 | Scaling the spectral response of metamaterial dipolar filters in the terahertz. Optics Communications, 2011, 284, 1690-1693.                                        | 2.1 | 9         |
| 65 | Midinfrared surface plasmon sensor based on a substrateless metal mesh. Applied Physics Letters, 2011, 98, 091902.                                                  | 3.3 | 30        |
| 66 | Production of high power terahertz radiation through the SPARC Free-Electron Laser. , 2010, , .                                                                     |     | 0         |
| 67 | Performance of SISSI, the infrared beamline of the ELETTRA storage ring. Journal of the Optical Society of America B: Optical Physics, 2007, 24, 959.               | 2.1 | 121       |
| 68 | An infrared study of the superconducting diamond. Physica Status Solidi (A) Applications and<br>Materials Science, 2007, 204, 2945-2949.                            | 1.8 | 1         |
| 69 | Low-Energy Electrodynamics of Superconducting Diamond. Physical Review Letters, 2006, 97, 097002.                                                                   | 7.8 | 55        |
| 70 | The synchrotron infrared beamline SISSI at ELETTRA. Infrared Physics and Technology, 2004, 45, 375-381.                                                             | 2.9 | 9         |