Andrew Hunt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9580370/publications.pdf

Version: 2024-02-01

124 papers 7,139 citations

43 h-index 58581 82 g-index

147 all docs

147 docs citations

times ranked

147

8855 citing authors

#	Article	IF	CITATIONS
1	Characterization of dissolved organic carbon and disinfection by-products in biochar filter leachate using orbitrap mass spectrometry. Journal of Hazardous Materials, 2022, 424, 127691.	12.4	5
2	Impact of Conventional and Sustainable Solvents on the Yield, Selectivity, and Recovery of Curcuminoids from Turmeric. ACS Sustainable Chemistry and Engineering, 2022, 10, 104-114.	6.7	12
3	Response to Comment on "Impact of Conventional and Sustainable Solvents on the Yield, Selectivity, and Recovery of Curcuminoids from Turmeric― ACS Sustainable Chemistry and Engineering, 2022, 10, 2273-2274.	6.7	1
4	2,5-Diethyl-2,5-Dimethyloxolane (DEDMO) as a Nonpolar, Nonperoxide-Forming Ether Solvent for Organic Synthesis. ACS Sustainable Chemistry and Engineering, 2022, 10, 4486-4493.	6.7	3
5	Enhanced triclocarban remediation from groundwater using Pseudomonas fluorescens strain MC46 immobilized on agro-industrial waste-derived biochar: Optimization and kinetic analysis. Journal of Environmental Chemical Engineering, 2022, 10, 107610.	6.7	4
6	Effect of harvest time on the compositional changes in essential oils, cannabinoids, and waxes of hemp ($\langle i \rangle$ Cannabis sativa $\langle i \rangle$ L.). Royal Society Open Science, 2022, 9, .	2.4	4
7	Composite proton conducting membranes from chitosan, poly(vinyl alcohol) and sulfonic acid-functionalized silica nanoparticles. International Journal of Hydrogen Energy, 2021, 46, 2479-2490.	7.1	11
8	Supercritical extraction and microwave activation of wood wastes for enhanced syngas production and generation of fullerene-like soot particles. Fuel Processing Technology, 2021, 212, 106633.	7.2	7
9	Vegetable oil as a highly effective 100% bio-based alternative solvent for the one-pot multicomponent Biginelli reaction. Green Chemistry, 2021, 23, 5766-5774.	9.0	17
10	Supercritical Extraction of Biomass—A Green and Sustainable Method to Control the Pyrolysis Product Distribution. ACS Sustainable Chemistry and Engineering, 2021, 9, 5278-5287.	6.7	5
11	High pressure systems as sustainable extraction and pre-treatment technologies for a holistic corn stover biorefinery. BMC Chemistry, 2021, 15, 37.	3.8	10
12	Supercritical extraction of biomass as an effective pretreatment step for the char yield control in pyrolysis. Renewable Energy, 2021, 170, 107-117.	8.9	16
13	Rice straw-derived highly mesoporous carbon-zinc oxide nanocomposites as high performance photocatalytic adsorbents for toxic dyes. Journal of Cleaner Production, 2021, 318, 128583.	9.3	27
14	Removal of triclocarban from treated wastewater using cell-immobilized biochar as a sustainable water treatment technology. Journal of Cleaner Production, 2021, 320, 128919.	9.3	19
15	Activated carbons from waste Cassia bakeriana seed pods as high-performance adsorbents for toxic anionic dye and ciprofloxacin antibiotic remediation. Bioresource Technology, 2021, 341, 125832.	9.6	38
16	A simple strategy to enhance the sensitivity of fluorescent sensor-based CdS quantum dots by using a surfactant for Hg2+ detection. Analytical Methods, 2021, 13, 4069-4078.	2.7	0
17	Color Removal of Wastewater from Silk Dyeing Process by Using Treated Fly Ash from Sugar Industry. Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy, 2021, 100, 212-218.	0.2	1
18	Preparation of Activated Carbons from Hydrolyzed <i>Dipterocarpus alatus</i> Leaves: Value Added Product from Biodiesel Production Waste. Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy, 2021, 100, 219-224.	0.2	1

#	Article	IF	CITATIONS
19	3-Methoxybutan-2-one as a sustainable bio-based alternative to chlorinated solvents. RSC Advances, 2021, 11, 39412-39419.	3.6	2
20	The effect of wood composition and supercritical CO2 extraction on charcoal production in ferroalloy industries. Energy, 2020, 193, 116696.	8.8	19
21	Application of bio-based solvents for biocatalysed synthesis of amides with <i>Pseudomonas stutzeri</i> lipase (PSL). Pure and Applied Chemistry, 2020, 92, 579-586.	1.9	3
22	Direct comparison of safer or sustainable alternative dipolar aprotic solvents for use in carbon–carbon bond formation. Reaction Chemistry and Engineering, 2020, 5, 1798-1804.	3.7	15
23	Graphitic mesoporous carbon-silica composites from low-value sugarcane by-products for the removal of toxic dyes from wastewaters. Royal Society Open Science, 2020, 7, 200438.	2.4	12
24	A Family of Waterâ€Immiscible, Dipolar Aprotic, Diamide Solvents from Succinic Acid. ChemSusChem, 2020, 13, 3212-3221.	6.8	6
25	Preparation of activated carbon from <i>Dipterocarpus alatus</i> fruit and its application for methylene blue adsorption. RSC Advances, 2020, 10, 21082-21091.	3 . 6	77
26	Extraction of cones, branches, needles and bark from Norway spruce (Picea abies) by supercritical carbon dioxide and soxhlet extractions techniques. Industrial Crops and Products, 2020, 145, 112096.	5 . 2	31
27	Deposition of Palladium Nanoparticles by the Coating of the Carbonaceous Layer from Wastepaper-Derived Bio-Oil. ACS Omega, 2020, 5, 16021-16029.	3 . 5	8
28	Synthesis and application of tuneable carbon–silica composites from the microwave pyrolysis of waste paper for selective recovery of gold from acidic solutions. RSC Advances, 2020, 10, 25228-25238.	3.6	9
29	Simultaneous manganese adsorption and biotransformation by Streptomyces violarus strain SBP1 cell-immobilized biochar. Science of the Total Environment, 2020, 713, 136708.	8.0	54
30	A comparison of the solvation power of the green solvent 2,2,5,5-tetramethyloxolane versus toluene via partition coefficients. Journal of Cleaner Production, 2019, 240, 118175.	9.3	8
31	Using <i>in vivo</i> nickel to direct the pyrolysis of hyperaccumulator plant biomass. Green Chemistry, 2019, 21, 1236-1240.	9.0	22
32	Modification of bio-based \hat{l}^2 -diketone from wheat straw wax: synthesis of polydentate lipophilic super-chelators for enhanced metal recovery. RSC Advances, 2019, 9, 3542-3549.	3.6	2
33	Geminal Diol of Dihydrolevoglucosenone as a Switchable Hydrotrope: A Continuum of Green Nanostructured Solvents. ACS Sustainable Chemistry and Engineering, 2019, 7, 7878-7883.	6.7	43
34	Catalytic pyrolysis of plastic waste for the production of liquid fuels for engines. RSC Advances, 2019, 9, 5844-5857.	3.6	159
35	Aluminium-biochar composites as sustainable heterogeneous catalysts for glucose isomerisation in a biorefinery. Green Chemistry, 2019, 21, 1267-1281.	9.0	157
36	Supercritical Carbon Dioxide Extraction of Value-Added Products and Thermochemical Synthesis of Platform Chemicals from Food Waste. ACS Sustainable Chemistry and Engineering, 2019, 7, 2821-2829.	6.7	23

#	Article	IF	Citations
37	Conservation of Critical Elements of the Periodic Table. ChemSusChem, 2019, 12, 397-403.	6.8	39
38	Lignin materials for adsorption: Current trend, perspectives and opportunities. Bioresource Technology, 2019, 272, 570-581.	9.6	236
39	Propylene carbonate and γ-valerolactone as green solvents enhance Sn(<scp>iv</scp>)-catalysed hydroxymethylfurfural (HMF) production from bread waste. Green Chemistry, 2018, 20, 2064-2074.	9.0	85
40	Supercritical extraction of waxes and lipids from biomass: A valuable first step towards an integrated biorefinery. Journal of Cleaner Production, 2018, 177, 684-698.	9.3	57
41	Optimisation and economic evaluation of the supercritical carbon dioxide extraction of waxes from waste date palm (Phoenix dactylifera) leaves. Journal of Cleaner Production, 2018, 186, 988-996.	9.3	31
42	Valorisation of waste rice straw for the production of highly effective carbon based adsorbents for dyes removal. Journal of Cleaner Production, 2018, 172, 1128-1139.	9.3	154
43	Valorization of lignocellulosic fibres of paper waste into levulinic acid using solid and aqueous BrÃ,nsted acid. Bioresource Technology, 2018, 247, 387-394.	9.6	55
44	Valorization of spruce needle waste via supercritical extraction of waxes and facile isolation of nonacosan-10-ol. Journal of Cleaner Production, 2018, 171, 557-566.	9.3	19
45	Monolithic mesoporous graphitic composites as super capacitors: from Starbons to StarenesÂ $^{\odot}$. Journal of Materials Chemistry A, 2018, 6, 1119-1127.	10.3	13
46	Towards sustainable kinetic resolution, a combination of bio-catalysis, flow chemistry and bio-based solvents. Green Chemistry, 2018, 20, 136-140.	9.0	43
47	Utilisation of supercritical fluids for the effective extraction of waxes and Cannabidiol (CBD) from hemp wastes. Industrial Crops and Products, 2018, 112, 38-46.	5.2	48
48	Development of hyperbranched crosslinkers from bio-derived platform molecules for the synthesis of epoxidised soybean oil based thermosets. RSC Advances, 2018, 8, 37267-37276.	3.6	7
49	Development of pharmaceutically relevant bio-based intermediates though aldol condensation and Claisen–Schmidt reactions of dihydrolevoglucosenone (Cyrene®). Green Chemistry, 2018, 20, 4423-4427.	9.0	27
50	A methodical selection process for the development of ketones and esters as bio-based replacements for traditional hydrocarbon solvents. Green Chemistry, 2018, 20, 4003-4011.	9.0	26
51	Lignin valorization for the production of renewable chemicals: State-of-the-art review and future prospects. Bioresource Technology, 2018, 269, 465-475.	9.6	298
52	CHAPTER 1. Introduction to High-pressure Solvent Systems. RSC Green Chemistry, 2018, , 1-13.	0.1	2
53	CHAPTER 3. Supercritical Carbon Dioxide Extraction of Lipophilic Molecules. RSC Green Chemistry, 2018, , 40-76.	0.1	2
54	CHAPTER 11. Solubility and Synthesis of Polymers Using Supercritical Carbon Dioxide. RSC Green Chemistry, 2018, , 340-373.	0.1	1

#	Article	IF	CITATIONS
55	Toward Financially Viable Phytoextraction and Production of Plant-Based Palladium Catalysts. Environmental Science & Environme	10.0	38
56	Bio-based carbonaceous composite materials from epoxidised linseed oil, bio-derived curing agent and starch with controllable functionality. RSC Advances, 2017, 7, 24282-24290.	3.6	0
57	Polysaccharide-derived mesoporous materials (Starbon $\hat{A}^{@}$) for sustainable separation of complex mixtures. Faraday Discussions, 2017, 202, 451-464.	3.2	21
58	Challenges in the development of bio-based solvents: a case study on methyl(2,2-dimethyl-1,3-dioxolan-4-yl)methyl carbonate as an alternative aprotic solvent. Faraday Discussions, 2017, 202, 157-173.	3.2	39
59	DFT and experimental analysis of aluminium chloride as a Lewis acid proton carrier catalyst for dimethyl carbonate carboxymethylation of alcohols. Catalysis Science and Technology, 2017, 7, 4859-4865.	4.1	13
60	Polar aprotic solvent-water mixture as the medium for catalytic production of hydroxymethylfurfural (HMF) from bread waste. Bioresource Technology, 2017, 245, 456-462.	9.6	71
61	Feedstocks and analysis: general discussion. Faraday Discussions, 2017, 202, 497-519.	3.2	2
62	Bio-based materials: general discussion. Faraday Discussions, 2017, 202, 121-139.	3.2	3
63	Bio-based chemicals: general discussion. Faraday Discussions, 2017, 202, 227-245.	3.2	0
64	Conversion technologies: general discussion. Faraday Discussions, 2017, 202, 371-389.	3.2	0
65	Conformational and energetic properties of pyrrolidinyl PNA-DNA duplexes: A molecular dynamics simulation. Computational and Theoretical Chemistry, 2017, 1122, 27-33.	2.5	3
66	2,2,5,5-Tetramethyltetrahydrofuran (TMTHF): a non-polar, non-peroxide forming ether replacement for hazardous hydrocarbon solvents. Green Chemistry, 2017, 19, 3671-3678.	9.0	52
67	Tools and techniques for solvent selection: green solvent selection guides. Sustainable Chemical Processes, 2016, 4, .	2.3	837
68	N-Butylpyrrolidinone as a dipolar aprotic solvent for organic synthesis. Green Chemistry, 2016, 18, 3990-3996.	9.0	81
69	Effect of rate of pyrolysis on the textural properties of naturally-templated porous carbons from alginic acid. Journal of Analytical and Applied Pyrolysis, 2016, 121, 62-66.	5.5	12
70	Pre-treatment and extraction techniques for recovery of added value compounds from wastes throughout the agri-food chain. Green Chemistry, 2016, 18, 6160-6204.	9.0	136
71	Rapid and efficient biphasic liquid extraction of metals with bio-derived lipophilic Î ² -diketone. RSC Advances, 2016, 6, 95789-95792.	3.6	7
72	Dihydrolevoglucosenone (Cyrene) As a Green Alternative to <i>N,N</i> -Dimethylformamide (DMF) in MOF Synthesis. ACS Sustainable Chemistry and Engineering, 2016, 4, 7186-7192.	6.7	123

#	Article	IF	CITATIONS
73	Can bioâ€based chemicals meet demand? Global and regional caseâ€study around citrus wasteâ€derived limonene as a solvent for cleaning applications. Biofuels, Bioproducts and Biorefining, 2016, 10, 686-698.	3.7	56
74	Supercritical CO ₂ Extraction as an Effective Pretreatment Step for Wax Extraction in a Miscanthus Biorefinery. ACS Sustainable Chemistry and Engineering, 2016, 4, 5979-5988.	6.7	43
75	Acid-catalysed carboxymethylation, methylation and dehydration of alcohols and phenols with dimethyl carbonate under mild conditions. Green Chemistry, 2016, 18, 5839-5844.	9.0	37
76	Intelligent Approach to Solvent Substitution: The Identification of a New Class of Levoglucosenone Derivatives. ChemSusChem, 2016, 9, 3503-3512.	6.8	38
77	Synthesis of cholesterol-reducing sterol esters by enzymatic catalysis in bio-based solvents or solvent-free. RSC Advances, 2016, 6, 48753-48756.	3.6	17
78	Impact of supercritical extraction on solid fuel wood pellet properties and off-gassing during storage. Green Chemistry, 2016, 18, 2682-2690.	9.0	35
79	Chapter 3. Renewable Solvent Selection in Medicinal Chemistry. RSC Green Chemistry, 2016, , 28-40.	0.1	2
80	Chapter 5. The Importance of Elemental Sustainability and Critical Element Recovery for the Pharmaceutical Industry. RSC Green Chemistry, 2016, , 54-62.	0.1	1
81	Economic Assessment of Supercritical CO2 Extraction of Waxes as Part of a Maize Stover Biorefinery. International Journal of Molecular Sciences, 2015, 16, 17546-17564.	4.1	52
82	Opportunities for Bio-Based Solvents Created as Petrochemical and Fuel Products Transition towards Renewable Resources. International Journal of Molecular Sciences, 2015, 16, 17101-17159.	4.1	177
83	Green preparation of tuneable carbon–silica composite materials from wastes. Journal of Materials Chemistry A, 2015, 3, 14148-14156.	10.3	15
84	Bio-derived materials as a green route for precious & metal recovery and re-use. Green Chemistry, 2015, 17, 1951-1965.	9.0	220
85	Direct synthesis of Pd nanoparticles on alginic acid and seaweed supports. Green Chemistry, 2015, 17, 2200-2207.	9.0	31
86	Sugarcane waste as a valuable source of lipophilic molecules. Industrial Crops and Products, 2015, 76, 95-103.	5.2	59
87	The importance of elemental sustainability and critical element recovery. Green Chemistry, 2015, 17, 1949-1950.	9.0	55
88	Starch-derived carbonaceous mesoporous materials (Starbon $\hat{A}^{\text{@}}$) for the selective adsorption and recovery of critical metals. Green Chemistry, 2015, 17, 2146-2149.	9.0	57
89	Supercritical extraction as an effective first-step in a maize stover biorefinery. RSC Advances, 2015, 5, 43831-43838.	3.6	35
90	Low-temperature microwave-assisted pyrolysis of waste office paper and the application of bio-oil as an Al adhesive. Green Chemistry, 2015, 17, 260-270.	9.0	65

#	Article	IF	Citations
91	Improving water selectivity of poly (vinyl alcohol) (PVA) $\hat{a} \in \text{``Fumed silica (FS)'}$ nanocomposite membranes by grafting of poly (2-hydroxyethyl methacrylate) (PHEMA) on fumed silica particles. Chemical Engineering Science, 2015, 122, 373-383.	3.8	21
92	Supported Palladium Nanoparticles Synthesized by Living Plants as a Catalyst for Suzuki-Miyaura Reactions. PLoS ONE, 2014, 9, e87192.	2.5	63
93	Phytoextraction as a tool for green chemistry. Green Processing and Synthesis, 2014, 3, .	3.4	17
94	Deposition of palladium nanoparticles in SBA-15 templated silica using supercritical carbon dioxide. Materials Letters, 2014, 116, 408-411.	2.6	17
95	Applications of nanoparticles in biomass conversion to chemicals and fuels. Green Chemistry, 2014, 16, 573-584.	9.0	96
96	A natural template approach to mesoporous carbon spheres for use as green chromatographic stationary phases. RSC Advances, 2014, 4, 222-228.	3.6	27
97	Biocatalysis in bio-derived solvents: an improved approach for medium optimisation. Green Chemistry, 2014, 16, 2107-2110.	9.0	50
98	Dihydrolevoglucosenone (Cyrene) as a bio-based alternative for dipolar aprotic solvents. Chemical Communications, 2014, 50, 9650-9652.	4.1	329
99	Microwave assisted extraction as an important technology for valorising orange waste. New Journal of Chemistry, 2014, 38, 2278-2283.	2.8	45
100	Bio-based thermoset composites from epoxidised linseed oil and expanded starch. RSC Advances, 2014, 4, 23304-23313.	3.6	32
101	Extractive profiles of different lodgepole pine (Pinus contorta) fractions grown under a direct seeding-based silvicultural regime. Industrial Crops and Products, 2014, 58, 220-229.	5.2	16
102	Identification, quantification and Chrastil modelling of wheat straw wax extraction using supercritical carbon dioxide. Comptes Rendus Chimie, 2014, 17, 293-300.	0.5	45
103	Cyclic Carbonates as Green Alternative Solvents for the Heck Reaction. ACS Sustainable Chemistry and Engineering, 2014, 2, 1739-1742.	6.7	168
104	Shaped mesoporous materials from fresh macroalgae. Journal of Materials Chemistry A, 2013, 1, 5203.	10.3	19
105	Alkali silicates and structured mesoporous silicas from biomass power station wastes: the emergence of bio-MCMs. Green Chemistry, 2013, 15, 1203.	9.0	44
106	Use of Starbon for the Adsorption and Desorption of Phenols. ACS Sustainable Chemistry and Engineering, 2013, 1, 1311-1318.	6.7	53
107	Green Chemistry for Postgraduates. Educacion Quimica, 2013, 24, 150-155.	0.1	9
108	From waste to wealth using green chemistry. Pure and Applied Chemistry, 2013, 85, 1625-1631.	1.9	38

#	Article	IF	CITATIONS
109	Elemental Sustainability and the Importance of Scarce Element Recovery. RSC Green Chemistry, 2013, , 1-28.	0.1	33
110	Supercritical fluid extraction (SFE) as an effective tool in reducing auto-oxidation of dried pine sawdust for power generation. RSC Advances, 2012, 2, 1806.	3.6	24
111	Thermosetting resin based on epoxidised linseed oil and bio-derived crosslinker. Green Chemistry, 2012, 14, 1759.	9.0	107
112	Synthesis and Characterization of Alkylâ€lmidazoliumâ€Based Periodic Mesoporous Organosilicas: A Versatile Host for the Immobilization of Perruthenate (RuO ₄ ^{â^'}) in the Aerobic Oxidation of Alcohols. Chemistry - A European Journal, 2012, 18, 13520-13530.	3.3	84
113	The importance of being porous: polysaccharide-derived mesoporous materials for use in dye adsorption. RSC Advances, 2012, 2, 8992.	3.6	148
114	The chemical value of wheat straw combustion residues. RSC Advances, 2011, 1, 523.	3.6	28
115	Palladium containing periodic mesoporous organosilica with imidazolium framework (Pd@PMO-IL): an efficient and recyclable catalyst for the aerobic oxidation of alcohols. Organic and Biomolecular Chemistry, 2011, 9, 7420.	2.8	85
116	Use of green chemical technologies in an integrated biorefinery. Energy and Environmental Science, 2011, 4, 471-479.	30.8	130
117	Chitosan Aerogels Exhibiting High Surface Area for Biomedical Application: Preparation, Characterization, and Antibacterial Study. International Journal of Polymeric Materials and Polymeric Biomaterials, 2011, 60, 988-999.	3.4	67
118	Self-assembled organic–inorganic hybrid silica with ionic liquid framework: a novel support for the catalytic enantioselective Strecker reaction of imines using Yb(OTf)3–pybox catalyst. Chemical Communications, 2010, 46, 6947.	4.1	66
119	Generation, Capture, and Utilization of Industrial Carbon Dioxide. ChemSusChem, 2010, 3, 306-322.	6.8	291
120	Ordered Mesoporous Organosilica with Ionicâ€Liquid Framework: An Efficient and Reusable Support for the Palladiumâ€Catalyzed Suzuki–Miyaura Coupling Reaction in Water. Chemistry - A European Journal, 2010, 16, 8047-8053.	3.3	207
121	Direct chitosan scaffold formation via chitin whiskers by a supercritical carbon dioxide method: a green approach. Journal of Materials Chemistry, 2009, 19, 8651.	6.7	28
122	Expanding the potential for waste polyvinyl-alcohol. Green Chemistry, 2009, 11, 1332.	9.0	16
123	Green chemistry and the biorefinery: a partnership for a sustainable future. Green Chemistry, 2006, 8, 853.	9.0	285
124	Delicious not siliceous: expanded carbohydrates as renewable separation media for column chromatography. Chemical Communications, 2005, , 2903.	4.1	42