Kenneth K Y Wong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9580278/publications.pdf

Version: 2024-02-01

283 papers

5,179 citations

38 h-index 58 g-index

287 all docs

287 docs citations

times ranked

287

3152 citing authors

#	Article	IF	CITATIONS
1	Breathing Dissipative Soliton Molecule Switching in a Bidirectional Modeâ€Locked Fiber Laser. Advanced Photonics Research, 2022, 3, .	3.6	13
2	Pencil-beam scanning catheter for intracoronary optical coherence tomography. Opto-Electronic Advances, 2022, 5, 200050-200050.	13.3	6
3	Two-photon microscopy with enhanced resolution and signal-to-background ratio using hollow Gaussian beam excitation. Optics Letters, 2022, 47, 2048.	3.3	2
4	Dynamics of breathing dissipative soliton pairs in a bidirectional ultrafast fiber laser. Optics Letters, 2022, 47, 1968.	3.3	12
5	Hybrid optical parametrically-oscillating emitter at $1930 \hat{\text{A}}$ nm for volumetric photoacoustic imaging of water content. ELight, 2022, 2, .	23.9	17
6	890-nm-excited SHG and fluorescence imaging enabled by an all-fiber mode-locked laser. Optics Letters, 2022, 47, 2710.	3.3	4
7	Temporal Imaging for Ultrafast Spectral-Temporal Optical Signal Processing and Characterization. IEEE Journal of Selected Topics in Quantum Electronics, 2021, 27, 1-13.	2.9	5
8	Nearâ€infrared doubleâ€illumination opticalâ€resolution photoacoustic microscopy. Journal of Biophotonics, 2021, 14, e202000392.	2.3	2
9	High-throughput Multimodal FACED Imaging Flow Cytometry. , 2021, , .		O
10	1.7-νm dissipative soliton Tm-doped fiber laser. Photonics Research, 2021, 9, 873.	7.0	38
11	Background-Free Volumetric Two-Photon Microscopy by Side-Lobes-Cancelled Bessel Beam. IEEE		7
	Journal of Selected Topics in Quantum Electronics, 2021, 27, 1-7.	2.9	
12	Journal of Selected Topics in Quantum Electronics, 2021, 27, 1-7. Multimodal FACED imaging for large-scale single-cell morphological profiling. APL Photonics, 2021, 6,	5.7	12
12			
	Multimodal FACED imaging for large-scale single-cell morphological profiling. APL Photonics, 2021, 6,	5.7	12
13	Multimodal FACED imaging for large-scale single-cell morphological profiling. APL Photonics, 2021, 6, . Broadband meta-converters for multiple Laguerre-Gaussian modes. Photonics Research, 2021, 9, 1689. Largeâ€Scale Surface Shape Sensing with Learningâ€Based Computational Mechanics. Advanced Intelligent	5.7 7.0	12 9
13	Multimodal FACED imaging for large-scale single-cell morphological profiling. APL Photonics, 2021, 6, . Broadband meta-converters for multiple Laguerre-Gaussian modes. Photonics Research, 2021, 9, 1689. Largeâ€Scale Surface Shape Sensing with Learningâ€Based Computational Mechanics. Advanced Intelligent Systems, 2021, 3, 2100089. Generalized and scalable trajectory inference in single-cell omics data with VIA. Nature	5.7 7.0 6.1	12 9 6
13 14 15	Multimodal FACED imaging for large-scale single-cell morphological profiling. APL Photonics, 2021, 6, Broadband meta-converters for multiple Laguerre-Gaussian modes. Photonics Research, 2021, 9, 1689. Largeâ€Scale Surface Shape Sensing with Learningâ€Based Computational Mechanics. Advanced Intelligent Systems, 2021, 3, 2100089. Generalized and scalable trajectory inference in single-cell omics data with VIA. Nature Communications, 2021, 12, 5528.	5.7 7.0 6.1 12.8	12 9 6

#	Article	IF	CITATIONS
19	Multimodal FACED imaging flow cytometry for correlative single-cell morphological analysis. , 2021, , .		0
20	Self-synchronized two-color fiber laser system for stimulated Raman scattering microscopy in cell-silent regime. , 2021, , .		1
21	Large-scale optical pulling of cancer cells with counter-propagating beams in the near-infrared-II window., 2021,,.		О
22	Deconvolution of Non-diffracting Beam Based Confocal Two-photon Microscopy., 2021,,.		0
23	Cloaking nanosecond events at any time. Frontiers of Optoelectronics, 2020, 13, 188-189.	3.7	O
24	Ultrafast single-shot optical vector network analyzer based on coherent time-stretch. APL Photonics, 2020, 5, 106109.	5.7	2
25	Deep-learning-assisted biophysical imaging cytometry at massive throughput delineates cell population heterogeneity. Lab on A Chip, 2020, 20, 3696-3708.	6.0	41
26	Photonic Nanojet Mediated Backaction of Dielectric Microparticles. ACS Photonics, 2020, 7, 1483-1490.	6.6	23
27	Encrypted wide-field two-photon microscopy with single-pixel detection and compressed sensing. Applied Physics Express, 2020, 13, 032007.	2.4	2
28	High-contrast, fast chemical imaging by coherent Raman scattering using a self-synchronized two-colour fibre laser. Light: Science and Applications, 2020, 9, 25.	16.6	50
29	Parallelized volumetric fluorescence microscopy with a reconfigurable coded incoherent light-sheet array. Light: Science and Applications, 2020, 9, 8.	16.6	39
30	Real-time transition dynamics and stability of chip-scale dispersion-managed frequency microcombs. Light: Science and Applications, 2020, 9, 52.	16.6	24
31	Axially resolved volumetric two-photon microscopy with an extended field of view using depth localization under mirrored Airy beams. Optics Express, 2020, 28, 39563.	3.4	2
32	Grüneisen-relaxation photoacoustic microscopy at 1.7  Âμm and its application in lipid imaging. Optics Letters, 2020, 45, 3268.	3.3	11
33	Resolution enhancement in an extended depth of field for volumetric two-photon microscopy. Optics Letters, 2020, 45, 3054.	3.3	8
34	Multiscale high-speed photoacoustic microscopy based on free-space light transmission and a MEMS scanning mirror. Optics Letters, 2020, 45, 4312.	3.3	25
35	Buildup and dissociation dynamics of dissipative optical soliton molecules. Optica, 2020, 7, 965.	9.3	57
36	Optical coherence tomography with balanced signal strength across the depth for pearl inspection. OSA Continuum, 2020, 3, 1739.	1.8	2

3

#	Article	IF	Citations
37	High-energy all-fiber gain-switched thulium-doped fiber laser for volumetric photoacoustic imaging of lipids. Photonics Research, 2020, 8, 160.	7.0	34
38	Breathing dissipative soliton explosions in a bidirectional ultrafast fiber laser. Photonics Research, 2020, 8, 1566.	7.0	44
39	Two-photon microscopy using hollow Gaussian beam. , 2020, , .		0
40	Scattering resilient single pixel imaging with a gain-switched thulium-doped fiber laser. , 2020, , .		0
41	Single-cell Fourier-transform light scattering analysis by high- throughput label-free imaging flow cytometry. , 2020, , .		0
42	Volumetric two-photon microscopy with expanded field of view using dual Airy beam. , 2020, , .		0
43	All-fiber thulium-doped fiber laser (TDFL) for volumetric photoacoustic microscopy of lipids. , 2020, , .		1
44	Broadband thulium-assisted optical parametric chirped-pulse amplifier (TAOPCPA) for spectrally encoded microscopy at 2 $\hat{l}\frac{1}{4}$ m. , 2020, , .		0
45	3D reconstruction for volumetric two-photon microscopy using dual Airy beam. , 2020, , .		0
46	Large-Temporal-Numerical-Aperture Parametric Spectro-Temporal Analyzer Based on Silicon Waveguide. IEEE Photonics Journal, 2019, 11, 1-10.	2.0	5
47	Label-Free Phytoplankton Analysis by High-Throughput Quantitative Phase Imaging Cytometry and Machine Learning. , 2019, , .		0
48	High Energy Noise-Like Pulse Generation from a Mode-Locked Thulium-Doped Fiber Laser at $1.7 {\rm \^A\^1} \%$ m. IEEE Photonics Journal, 2019, 11, 1-6.	2.0	17
49	Broadband dynamic spectrum characterization based on gating-assisted electro-optic time lens. Applied Physics Letters, 2019, 114, .	3.3	8
50	Quantitative Phase Imaging Flow Cytometry for Ultraâ€Largeâ€Scale Singleâ€Cell Biophysical Phenotyping. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2019, 95, 510-520.	1.5	60
51	Multiâ€ATOM: Ultrahighâ€ŧhroughput singleâ€ɛell quantitative phase imaging with subcellular resolution. Journal of Biophotonics, 2019, 12, e201800479.	2.3	34
52	High Energy Dissipative Soliton Resonance in a Thulium-Doped Fiber Laser at 1750 nm., 2019, , .		0
53	High-Contrast Coherent Raman Scattering Imaging using a Self-Synchronized Dual-Color Fiber Laser. , 2019, , .		0
54	Time-division-multiplexed observation bandwidth for ultrafast parametric spectro-temporal analyzer. Optics Express, 2019, 27, 30441.	3.4	7

#	Article	IF	CITATIONS
55	Volumetric two-photon microscopy with a non-diffracting Airy beam. Optics Letters, 2019, 44, 391.	3.3	28
56	Dual-comb spectrally encoded confocal microscopy by electro-optic modulators. Optics Letters, 2019, 44, 2919.	3.3	12
57	Unveiling femtosecond rogue-wave structures in noise-like pulses by a stable and synchronized time magnifier. Optics Letters, 2019, 44, 4351.	3.3	26
58	Behavioral similarity of dissipative solitons in an ultrafast fiber laser. Optics Letters, 2019, 44, 4813.	3.3	24
59	Depth-resolved volumetric two-photon microscopy based on dual Airy beam scanning. Optics Letters, 2019, 44, 5238.	3.3	17
60	Temporal structured illumination time-stretch microscopy., 2019,,.		0
61	Resolving the temporal structure of noise-like pulse using a synchronized time magnifier. , 2019, , .		0
62	1.7 - $1\frac{1}{4}$ m high-power laser generation from a thulium-assisted optical parametric oscillator (TAOPO) for bond-selective photoacoustic microscopy. , 2019 , , .		0
63	Comment on "Ghost cytometry― Science, 2019, 364, .	12.6	6
64	Temporally structured illumination for ultrafast time-stretch microscopy. Optics Letters, 2019, 44, 4634.	3.3	2
65	Ultrafast spectral dynamics of dual-color-soliton intracavity collision in a mode-locked fiber laser. Applied Physics Letters, 2018, 112, .	3.3	63
66	Broadband High-Energy All-Fiber Laser at 1.6 \$mu\$ m. IEEE Photonics Technology Letters, 2018, 30, 311-314.	2.5	18
67	A highâ€throughput allâ€optical laserâ€scanning imaging flow cytometer with biomolecular specificity and subcellular resolution. Journal of Biophotonics, 2018, 11, e201700178.	2.3	14
68	Ultrafast Green-Light Swept-Source Imaging Through Advanced Fiber-Optic Technologies. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24, 1-5.	2.9	0
69	Wavelength-swept source at 2.0 Â μ m through second harmonic generation. , 2018, , .		0
70	Video-rate centimeter-range optical coherence tomography based on dual optical frequency combs by electro-optic modulators. Optics Express, 2018, 26, 24928.	3.4	12
71	Optical Rogue Waves by Random Dissipative Soliton Buildup in a Fiber Laser. IEEE Photonics Technology Letters, 2018, 30, 1803-1806.	2.5	13
72	102-nm, 445-MHz inertial-free swept source by mode-locked fiber laser and time stretch technique for optical coherence tomography. Optics Express, 2018, 26, 4370.	3.4	46

#	Article	IF	CITATIONS
73	Short pulse generation from a passively mode-locked fiber optical parametric oscillator with optical time-stretch. Optics Express, 2018, 26, 9565.	3.4	5
74	Monolithically integrated InGaN/GaN light-emitting diodes, photodetectors, and waveguides on Si substrate. Optica, 2018, 5, 564.	9.3	102
75	Flexible pulse-stretching for a swept source at 20  μm using free-space angular-chirp-enhanced delay. Optics Letters, 2018, 43, 102.	3.3	5
76	Point-spread function manipulation of the swept-source optical coherence tomography through temporal phase modulation. Optics Express, 2018, 26, 7270.	3.4	1
77	Ultra-broadband spatiotemporal sweeping device for high-speed optical imaging. Optics Letters, 2018, 43, 3546.	3.3	1
78	An Ultrafast Wideband Discretely Swept Fiber Laser. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24, 1-5.	2.9	3
79	Ultrafast time-stretch microscopy based on dual-comb asynchronous optical sampling. Optics Letters, 2018, 43, 2118.	3.3	30
80	Parametric spectrotemporal analyzer based on four-wave mixing Bragg scattering. Optics Letters, 2018, 43, 1922.	3.3	7
81	Ultrafast optical imaging at 20  μm through second-harmonic-generation-based time-stretch at 10 Optics Letters, 2018, 43, 3822.	â € ‰Î¼m	11
82	Mutually ignited soliton explosions in a fiber laser. Optics Letters, 2018, 43, 4132.	3.3	54
83	Monolithic Integration of GaN-on-Sapphire Light-Emitting Diodes, Photodetectors, and Waveguides. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24, 1-6.	2.9	39
84	17  μm wavelength tunable gain-switched fiber laser and its application to spectroscopic photoacoustic imaging. Optics Letters, 2018, 43, 5849.	3.3	43
85	Ultrafast optical tomography using Raman-assisted temporal magnification., 2018,,.		О
86	Versatile laser and optical amplifier for ultrafast imaging. , 2018, , .		0
87	Dual-comb spectrally encoded confocal microscopy. , 2018, , .		1
88	Dual-comb optical coherence tomography., 2018,,.		1
89	Sensitivity-enhanced ultrafast optical tomography by parametric- and Raman-amplified temporal imaging. Optics Letters, 2018, 43, 5673.	3.3	3
90	Ultrafast laser-scanning time-stretch imaging at visible wavelengths. Light: Science and Applications, 2017, 6, e16196-e16196.	16.6	125

#	Article	IF	Citations
91	Spectral-temporal dynamics of multipulse mode-locking. Applied Physics Letters, 2017, 110, .	3.3	45
92	Microfluidic Imaging Flow Cytometry by Asymmetric-detection Time-stretch Optical Microscopy (ATOM). Journal of Visualized Experiments, 2017, , .	0.3	3
93	A rigorous analysis of the intermodal delay in few-mode fibers. Indian Journal of Physics, 2017, 91, 1609-1614.	1.8	1
94	Fiber chirped pulse amplification of a short wavelength mode-locked thulium-doped fiber laser. APL Photonics, 2017, 2, .	5.7	30
95	Real-time dynamics and cross-correlation gating spectroscopy of free-carrier Drude slow-light solitons. Light: Science and Applications, 2017, 6, e17008-e17008.	16.6	7
96	Panoramic-reconstruction temporal imaging for seamless measurements of slowly-evolved femtosecond pulse dynamics. Nature Communications, 2017, 8, 61.	12.8	48
97	Comparing singleâ€incision versus standard laparoscopic gastrostomy in paediatric patients. Surgical Practice, 2017, 21, 23-27.	0.2	2
98	Temporal Stability and Spectral Accuracy Enhancement of the Spectro-Temporal Analyzer. IEEE Photonics Technology Letters, 2017, 29, 1971-1974.	2.5	8
99	Observation of dissipative Kerr soliton evolution with panoramic-reconstruction temporal imaging (PARTI)., 2017,,.		0
100	Pulse-spacing manipulation in a passively mode-locked fiber laser. , 2017, , .		0
101	Multi-MHz laser-scanning single-cell fluorescence microscopy by spatiotemporally encoded virtual source array. Biomedical Optics Express, 2017, 8, 4160.	2.9	14
102	Optical receiver sensitivity enhancement by single- and dual-band fiber optical parametric amplifier. Optics Express, 2017, 25, 27785.	3.4	1
103	Time-stretch microscopy on a DVD for high-throughput imaging cell-based assay. Biomedical Optics Express, 2017, 8, 640.	2.9	9
104	Compact fs ytterbium fiber laser at 1010 nm for biomedical applications. Biomedical Optics Express, 2017, 8, 4921.	2.9	28
105	Real-time observation of round-trip resolved spectral dynamics in a stabilized fs fiber laser. Optics Express, 2017, 25, 8751.	3.4	14
106	Pulse-spacing manipulation in a passively mode-locked multipulse fiber laser. Optics Express, 2017, 25, 13215.	3.4	5
107	kHz-order linewidth controllable 1550 nm single-frequency fiber laser for coherent optical communication. Optics Express, 2017, 25, 19752.	3.4	31
108	Unveiling multi-scale laser dynamics through time-stretch and time-lens spectroscopies. Optics Express, 2017, 25, 29098.	3.4	49

#	Article	IF	CITATIONS
109	Extended temporal cloak based on the inverse temporal Talbot effect. Optics Letters, 2017, 42, 767.	3.3	14
110	High-speed wavelength-swept source at 20 μm and its application in imaging through a scattering medium. Optics Letters, 2017, 42, 1540.	3.3	25
111	High-throughput single-cell second harmonic generation imaging in ultrafast microfluidic flow. , 2017, , .		0
112	Sensitivity enhancement in swept-source optical coherence tomography by parametric balanced detector and amplifier. Biomedical Optics Express, 2016, 7, 1294.	2.9	7
113	Ultrafast time-stretch imaging at 932 nm through a new highly-dispersive fiber. Biomedical Optics Express, 2016, 7, 5208.	2.9	9
114	Ultra-narrow linewidth full C-band tunable single-frequency linear-polarization fiber laser. Optics Express, 2016, 24, 26209.	3.4	28
115	Self-healing highly-chirped fiber laser at 10 μm. Optics Express, 2016, 24, 27577.	3.4	10
116	High-throughput time-stretch imaging flow cytometry for multi-class classification of phytoplankton. Optics Express, 2016, 24, 28170.	3.4	45
117	High-power widely tunable all-fiber thulium-assisted optical parametric oscillator at SWIR band. Optics Letters, 2016, 41, 5258.	3.3	11
118	High-throughput time-stretch imaging cellular assay based on a high-speed spinning platform. , 2016, , .		0
119	Compact and stable temporally magnified tomography using a phase-locked broadband source. Optics Letters, 2016, 41, 1562.	3.3	10
120	Optofluidic time-stretch imaging – an emerging tool for high-throughput imaging flow cytometry. Lab on A Chip, 2016, 16, 1743-1756.	6.0	83
121	Real-time characterization of spectral coherence of ultrafast laser based on optical time-stretch. , 2016, , .		0
122	Optical Time Stretch for High-Speed and High-Throughput Imagingâ€"From Single-Cell to Tissue-Wide Scales. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22, 89-103.	2.9	14
123	Ultrafast Spectroscopy Based on Temporal Focusing and Its Applications. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22, 295-306.	2.9	25
124	Spectrally Encoded Confocal Microscopy at 1.9 <inline-formula> <tex-math notation="LaTeX">\$mu ext{m}\$ </tex-math></inline-formula> . IEEE Photonics Technology Letters, 2016, 28, 201-204.	2.5	3
125	Ultrafast Microfluidic Cellular Imaging by Optical Time-Stretch. Methods in Molecular Biology, 2016, 1389, 23-45.	0.9	5
126	Ultrafast measurements of optical spectral coherence by single-shot time-stretch interferometry. Scientific Reports, 2016, 6, 27937.	3.3	20

#	Article	IF	CITATIONS
127	Arbitrary two-dimensional spectrally encoded pattern generation—a new strategy for high-speed patterned illumination imaging. Optica, 2015, 2, 1037.	9.3	22
128	Ultrafast spectral-domain optical coherence tomography realized by parametric spectro-temporal analyzer. , 2015, , .		2
129	High-throughput intrinsic single-cell phenotyping by quantitative asymmetric-detection time-stretch optical microscopy (Q-ATOM). , 2015, , .		O
130	28 MHz swept source at $10\hat{l}^1\!\!/4$ m for ultrafast quantitative phase imaging. Biomedical Optics Express, 2015, 6, 3855.	2.9	24
131	Tri-band spectroscopic optical coherence tomography based on optical parametric amplification for lipid and vessel visualization. Journal of Biomedical Optics, 2015, 20, 126006.	2.6	3
132	Optical time-stretch imaging flow cytometry of phytoplankton. , 2015, , .		1
133	Chromaticâ€dispersionâ€free transmission using timeâ€reversal optical parametric amplifier. Electronics Letters, 2015, 51, 347-349.	1.0	O
134	Pulsing Manipulation in a 1.55- <inline-formula> <tex-math notation="LaTeX">\$mu ext{m}\$ </tex-math></inline-formula> Mode-Locked Fiber Laser by a 1- <inline-formula> <tex-math notation="LaTeX">\$mu ext{m}\$ </tex-math></inline-formula> Optical Pattern. IEEE Photonics Technology Letters, 2015, 27, 1949-1952.	2.5	6
135	1000–1400-nm partially mode-locked pulse from a simple all-fiber cavity. Optics Letters, 2015, 40, 3005.	3.3	7
136	Modulation instability in a highly nonlinear fiber for discrete-time pulsed random bit generation. Optics Letters, 2015, 40, 2665.	3.3	5
137	109  MHz optical tomography using temporal magnification. Optics Letters, 2015, 40, 2965.	3.3	15
138	Observing the spectral dynamics of a mode-locked laser with ultrafast parametric spectro-temporal analyzer. , 2015, , .		5
139	Overcoming the limitation of phase retrieval using Gerchberg–Saxton-like algorithm in optical fiber time-stretch systems. Optics Letters, 2015, 40, 3595.	3.3	29
140	110  nm versatile fiber optical parametric amplifier at 10  μm. Optics Letters, 2015, 40, 4090.	3.3	5
141	Ultrafast and versatile spectroscopy by temporal Fourier transform. Scientific Reports, 2015, 4, 5351.	3.3	21
142	Single-Longitudinal-Mode Brillouin/Erbium Fiber Laser With High Linewidth-Reduction Ratio. IEEE Photonics Technology Letters, 2014, 26, 2387-2390.	2.5	10
143	Breathing laser as an inertia-free swept source for high-quality ultrafast optical bioimaging. Optics Letters, 2014, 39, 6593.	3.3	58
144	Spectrally-resolved statistical characterization of seeded supercontinuum suppression using optical time-stretch. Optics Express, 2014, 22, 11849.	3.4	12

#	Article	IF	CITATIONS
145	Enhanced depth resolution in optical scanning holography using a configurable pupil. Photonics Research, 2014, 2, 64.	7.0	27
146	Correlation between multiple modulation instability side lobes in dispersion oscillating fiber. Optics Letters, 2014, 39, 1881.	3.3	21
147	Time-stretch microscopy based on time-wavelength sequence reconstruction from wideband incoherent source. Applied Physics Letters, 2014, 105, .	3.3	18
148	Broadband fiber-optical parametric amplification for ultrafast time-stretch imaging at 10  μm. Optics Letters, 2014, 39, 5989.	3.3	31
149	Wavelength-encoded tomography based on optical temporal Fourier transform. Applied Physics Letters, 2014, 105, 091109.	3.3	7
150	Simultaneous dual-band optical coherence tomography for endoscopic applications. Journal of Biomedical Optics, 2014, 19, 126007.	2.6	7
151	Interferometric time-stretch microscopy for ultrafast quantitative cellular and tissue imaging at $1\hat{A}$ (i) \hat{I} /4 (i) m. Journal of Biomedical Optics, 2014, 19, 076001.	2.6	65
152	Enhanced supercontinuum generation in the normal dispersion pumping regime by seeded dispersive wave emission and stimulated Raman scattering. Optics Communications, 2014, 325, 28-34.	2.1	7
153	Effect of the CW-Seed's Linewidth on the Seeded Generation of Supercontinuum. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20, 605-611.	2.9	7
154	Coherent Laser Source for High Frame-Rate Optical Time-Stretch Microscopy at 1.0 \hat{l} 4m. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20, 384-389.	2.9	14
155	All-Optical Tunable Multitap Microwave Photonic Filter Enabled by Fiber Optical Parametric Amplifier. IEEE Photonics Technology Letters, 2014, 26, 893-895.	2.5	6
156	Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow. Scientific Reports, 2014, 4, 3656.	3.3	83
157	Fiber optical parametric oscillator based on highly nonlinear dispersion-shifted fiber. Frontiers of Optoelectronics, 2013, 6, 25-29.	3.7	4
158	Quad-Wavelength Fiber Optical Parametric Oscillator With Equally Distributed Dispersion. IEEE Photonics Technology Letters, 2013, 25, 940-943.	2.5	0
159	Shot-to-shot spectrally-resolved characterization of continuous-wave-triggered supercontinuum near 1µm., 2013, , .		O
160	Multiwavelength Single-Longitudinal-Mode Ytterbium-Doped Fiber Laser. IEEE Photonics Technology Letters, 2013, 25, 385-388.	2.5	19
161	Performance of parametric spectro-temporal analyzer (PASTA). Optics Express, 2013, 21, 32111.	3.4	20
162	Parametric spectro-temporal analyzer (PASTA) for real-time optical spectrum observation. Scientific Reports, 2013, 3, 2064.	3.3	67

#	Article	IF	Citations
163	40-GHz \$S\$-and \$L\$-Band Dual-Wavelength Pulse Source Using Fiber Optical Parametric Oscillator. IEEE Photonics Technology Letters, 2013, 25, 1258-1261.	2.5	O
164	Multiwavelength Pulse Generation Using Fiber Optical Parametric Oscillator. IEEE Photonics Technology Letters, 2013, 25, 33-35.	2.5	7
165	Speckle reduction of retinal optical coherence tomography based on contourlet shrinkage. Optics Letters, 2013, 38, 2900.	3.3	45
166	Comparison of state-of-art phase modulators and parametric mixers in time-lens applications under different repetition rates. Applied Optics, 2013, 52, 8817.	1.8	16
167	Effect of the CW-seed's linewidth on the seeded generation of supercontinuum. , 2013, , .		1
168	Optical time-stretch confocal microscopy at 1  μm. Optics Letters, 2012, 37, 3330.	3.3	126
169	Exploiting few mode-fibers for optical time-stretch confocal microscopy in the short near-infrared window. Optics Express, 2012, 20, 24115.	3.4	25
170	Distributed parametric amplifier for RZ-DPSK signal transmission system. Optics Express, 2012, 20, 19271.	3.4	2
171	Demonstration of minute continuous-wave triggered supercontinuum generation at $1\hat{l}^1\!\!/\!4$ m for high-speed biophotonic applications. Proceedings of SPIE, 2012, , .	0.8	0
172	Dual-Band Time-Multiplexing Swept-Source Optical Coherence Tomography Based on Optical Parametric Amplification. IEEE Journal of Selected Topics in Quantum Electronics, 2012, 18, 1287-1292.	2.9	13
173	Teaching introductory electrical engineering: Project-based learning experience. , 2012, , .		14
174	Stabilized Wide-Band Wavelength Conversion Enabled by CW-Triggered Supercontinuum. IEEE Photonics Technology Letters, 2012, 24, 1886-1889.	2.5	11
175	Optical time-stretch microscopy using few-mode fibers. , 2012, , .		0
176	Dispersive Fourier transform using few-mode fibers for real-time and high-speed spectroscopy. Proceedings of SPIE, 2012, , .	0.8	1
177	Wide-band error-free wavelength conversion based on continuous-wave-triggered supercontinuum. , 2012, , .		0
178	Characteristics of supercontinuum generation under the influence of a weak continuous-wave trigger. , $2011, , .$		0
179	A Tunable \$\$\$-Plus \$L\$-Band Continuous-Wave Single-Longitudinal-Mode Fiber-Optical Parametric Oscillator. IEEE Photonics Technology Letters, 2011, 23, 1451-1453.	2.5	5
180	Frequency Swept Fiber Ring Laser Based on Optical Parametric Process With Single-Longitudinal-Mode Operation. IEEE Photonics Technology Letters, 2011, 23, 203-205.	2.5	7

#	Article	IF	CITATIONS
181	Photonic Ultrawideband Pulse Generation With HNL-DSF-Based Phase and Intensity Modulator. IEEE Photonics Technology Letters, 2011, 23, 396-398.	2.5	7
182	160-Gb/s Polarization-Insensitive Demultiplexer Based on a Fiber-Optical Parametric Amplifier. IEEE Photonics Technology Letters, 2011, 23, 402-404.	2.5	1
183	Investigating the influence of a weak continuous-wave-trigger on picosecond supercontinuum generation. Optics Express, 2011, 19, 13757.	3.4	53
184	Serial time-encoded amplified microscopy (STEAM) based on a stabilized picosecond supercontinuum source. Optics Express, 2011, 19, 15810.	3.4	49
185	Manipulating supercontinuum generation by minute continuous wave. Optics Letters, 2011, 36, 160.	3.3	72
186	Fiber-Optical Parametric Amplifier With High-Speed Swept Pump. IEEE Photonics Technology Letters, 2011, 23, 1022-1024.	2.5	17
187	Power-Efficient Photonic BPSK Coded Ultrawideband Signal Generation. , 2011, , .		2
188	Fast Swept-Source Generation Based on Fiber Optical Parametric Amplifier., 2011,,.		0
189	A minute-continuous-wave-stabilized picosecond supercontinuum source for ultrafast serial time-encoded amplified microscopy (STEAM)., 2011,,.		0
190	Widely-Tunable Continuous-Wave Single-Longitudinal-Mode Fiber Optical Parametric Oscillator. , 2011,		2
191	Two-Wavelength Square-Waveform Generation Based on Fiber Optical Parametric Oscillator. IEEE Transactions on Microwave Theory and Techniques, 2010, 58, 3381-3386.	4.6	6
192	Tunable repetition rate multiplier based on fiber optical parametric oscillator. , 2010, , .		2
193	Room temperature photonic crystal band-edge lasing from nanopillar array on GaN patterned by nanosphere lithography. Journal of Applied Physics, 2010, 107, 063104.	2.5	12
194	Experimental demonstration of fiber optical parametric chirped-pulse amplification. Proceedings of SPIE, $2010, , .$	0.8	1
195	Dispersion-Tuned Harmonically Mode-Locked Fiber-Optical Parametric Oscillator. IEEE Photonics Technology Letters, 2010, 22, 580-582.	2.5	12
196	A Power-Efficient Ultra-Wideband Pulse Generator Based on Multiple PM-IM Conversions. IEEE Photonics Technology Letters, 2010, 22, 1063-1065.	2.5	45
197	Optically Powered WDM Signal Transmission System With Distributed Parametric Amplification. IEEE Photonics Technology Letters, 2010, 22, 1232-1234.	2.5	8
198	All-Fiber-Based Ultrashort Pulse Generation and Chirped Pulse Amplification Through Parametric Processes. IEEE Photonics Technology Letters, 2010, 22, 1330-1332.	2.5	27

#	Article	IF	CITATIONS
199	Ultra-Widely Tunable, Narrow Linewidth Picosecond Fiber-Optical Parametric Oscillator. IEEE Photonics Technology Letters, 2010, 22, 1756-1758.	2.5	12
200	High-Speed Photonic Power-Efficient Ultra-Wideband Transceiver Based on Multiple PM-IM Conversions. IEEE Transactions on Microwave Theory and Techniques, 2010, 58, 3344-3351.	4.6	13
201	Tunable single-longitudinal-mode fiber optical parametric oscillator. Optics Letters, 2010, 35, 481.	3.3	22
202	Fast and wide tuning wavelength-swept source based on dispersion-tuned fiber optical parametric oscillator. Optics Letters, 2010, 35, 2427.	3.3	21
203	Optically powered WDM signal transmission system with distributed parametric amplification. , 2010, , .		0
204	Fourier domain mode locking laser based on two-pump optical parametric amplification. , 2010, , .		0
205	Photonic Generation of Square Waveform Based on Fiber Optical Parametric Oscillator. , 2010, , .		0
206	Picosecond Fiber Optical Parametric Oscillator with 500 nm Tuning Range Using Dispersion-Shifted Fiber. , 2010, , .		0
207	The impact of dispersion fluctuation on the optimization of Parametric wavelength exchange., 2009,,.		1
208	Close-packed hemiellipsoid arrays: A photonic band gap structure patterned by nanosphere lithography. Applied Physics Letters, 2009, 95, 133125.	3.3	33
209	A novel pre-amplifier based on a fiber optical parametric amplifier. , 2009, , .		1
210	Low threshold, dual-cavity continuous-wave fiber optical parametric oscillator., 2009,,.		0
211	A novel pre-amplifier for WDM systems based on a fiber optical parametric amplifier., 2009,,.		0
212	Nanosecond optical parametric oscillator based On highly-nonlinear dispersion-shifted fiber. , 2009, , .		0
213	Wide-band generation of pico-second pulse via idler generation in optical parametric amplifier. , 2009, ,		0
214	Actively Mode-Locked Fiber Optical Parametric Oscillator. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15, 393-398.	2.9	36
215	A novel GaN photonic crystal structure comprising nanopillars with inclined sidewalls. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, S639-S642.	0.8	1
216	Letter to the Editor. Journal of Paediatrics and Child Health, 2009, 45, 767-769.	0.8	2

#	Article	IF	CITATIONS
217	Wide-Band Generation of Picosecond Pulse Using Fiber Optical Parametric Amplifier and Oscillator. IEEE Journal of Quantum Electronics, 2009, 45, 1350-1356.	1.9	14
218	Widely tunable picosecond optical parametric oscillator using highly nonlinear fiber. Optics Letters, 2009, 34, 989.	3.3	54
219	A Comprehensive Study on the Dynamic Range of Wavelength Exchange and Its Impact on Exchanged Signal Performance. Journal of Lightwave Technology, 2009, 27, 2707-2716.	4.6	5
220	Ultra-Wideband Pulse Generation Based on Cross-Gain Modulation in Fiber Optical Parametric Amplifier. IEEE Photonics Technology Letters, 2009, 21, 212-214.	2.5	37
221	Geometrical Shaping of InGaN Light-Emitting Diodes by Laser Micromachining. IEEE Photonics Technology Letters, 2009, 21, 1078-1080.	2.5	41
222	Millimeter-Wave UWB Signal Generation Via Frequency Up-Conversion Using Fiber Optical Parametric Amplifier. IEEE Photonics Technology Letters, 2009, 21, 1172-1174.	2.5	34
223	High-Sensitivity Optical Preamplifier for WDM Systems Using an Optical Parametric Amplifier. IEEE Photonics Technology Letters, 2009, 21, 1562-1564.	2.5	13
224	Byte-Level Parametric Wavelength Exchange for Narrow Pulsewidth Return-to-Zero Signal. IEEE Photonics Technology Letters, 2009, 21, 1591-1593.	2.5	18
225	Continuous-Wave Single-Longitudinal-Mode Fiber-Optical Parametric Oscillator With Reduced Pump Threshold. IEEE Photonics Technology Letters, 2009, 21, 1870-1872.	2.5	12
226	A simple 10-GHz picosecond pulse source based on fiber optical parametric oscillator., 2009,,.		2
227	Versatile parametric wavelength exchange. , 2009, , .		3
228	A Time-Dispersion-Tuned Picosecond Fiber-Optical Parametric Oscillator. IEEE Photonics Technology Letters, 2009, 21, 1223-1225.	2.5	15
229	A 160-Gb/s OTDM Demultiplexer Based on Parametric Wavelength Exchange. IEEE Journal of Quantum Electronics, 2009, 45, 1309-1316.	1.9	7
230	Second-Order Effects in Fiber Optical Parametric Amplifier. , 2009, , .		0
231	Multi-Tap Photonic Microwave Filter Based on Two-Pump Fiber Optical Parametric Amplifier., 2009, , .		1
232	160-Gb/s OTDM De-multiplexing Based on a Pulsed-Pump Parametric Wavelength Exchange. , 2009, , .		1
233	A Comprehensive Study on Crosstalk Suppression Techniques in Fiber Optical Parametric Amplifier by Modulation Format. IEEE Journal of Selected Topics in Quantum Electronics, 2008, 14, 659-665.	2.9	24
234	All-Optical Tunable Delay With NRZ-to-RZ Format Conversion Capability Based on Optical Kerr Switch and Pulse Pre-Chirping. Journal of Lightwave Technology, 2008, 26, 3770-3775.	4.6	11

#	Article	IF	CITATIONS
235	Pulsed pump wavelength exchange for high speed signal de-multiplexing. Optics Express, 2008, 16, 10894.	3.4	18
236	All-optical picoseconds logic gates based on a fiber optical parametric amplifier. Optics Express, 2008, 16, 18362.	3.4	55
237	Reduction of nonlinear crosstalk in fiber OPAs. , 2008, , .		1
238	Enhancement of tunable range of wavelength exchange by unequal pump power scheme. , 2008, , .		1
239	Receiver sensitivity improvement for ON-OFF keying signal by using optical parametric amplifier and balanced detection., 2008,,.		2
240	All-optical differentiator based on cross-gain modulation in optical parametric amplifier. , 2008, , .		0
241	80-Gbps to 10-Gbps OTDM de-multiplexer based on wavelength exchange in highly-nonlinear fibre. , 2008, , .		0
242	Ultrawideband doublet pulse generation using optical parametric amplifier., 2008,,.		0
243	Polychromatic light-emitting diodes with a fluorescent nanosphere opal coating. Nanotechnology, 2008, 19, 355203.	2.6	32
244	All-optical signal regeneration using optical parametric amplifier. , 2008, , .		0
245	Simultaneous optical delay and NRZ-RZ format conversion via cross-polarization modulation and pulse pre-chirping., 2008,,.		2
246	Wavelength Exchange with Enhanced Extinction Ratio in Highly Nonlinear Dispersion-Shifted Fiber. , 2007, , .		0
247	Tunable Repetition-rate Ultrawideband Monocycle Pulse Generation by using Optical Parametric Amplifier., 2007,,.		1
248	All-Optical Packet Switching by Pulsed-Pump Wavelength Exchange in a Highly Nonlinear Dispersion-Shifted Fiber. , 2007, , .		8
249	Wavelength exchange with enhanced extinction ratio in highly nonlinear dispersion-shifted fiber. , 2007, , .		0
250	Tunable repetition-rate ultrawideband monocycle pulse generation by using optical parametric amplifier., 2007,,.		0
251	All-optical wavelength conversion and multicasting by cross-gain modulation in a single-stage fiber optical parametric amplifier. , 2007, , .		10
252	Optical Pulse Generation using Two-Stage Compression based on Optical Parametric Amplifier. , 2007, , .		1

#	Article	IF	CITATIONS
253	Suppression of WDM Signal Crosstalk in Fiber Optical Parametric Amplifier by using RZ-DPSK Modulation Format., 2007,,.		3
254	Polarization-interleaved WDM signals in a fiber optical parametric amplifier with orthogonal pumps. Optics Express, 2007, 15, 56.	3.4	75
255	Widely Tunable Wavelength Exchange in Anomalous-Dispersion Regime. IEEE Photonics Technology Letters, 2007, 19, 1846-1848.	2.5	32
256	Experimental studies of the WDM signal crosstalk in two-pump fiber optical parametric amplifiers. Optics Communications, 2007, 270, 429-432.	2.1	66
257	Gain bandwidth optimization in two-pump fiber optical parametric amplifiers under bounded zero-dispersion wavelength fluctuations. Optics Communications, 2007, 272, 514-520.	2.1	9
258	Source Camera Identification by JPEG Compression Statistics for Image Forensics. , 2006, , .		18
259	Wavelength Exchange Using Two Pumps in Anomalous Regime. , 2006, , .		5
260	Effect of Stimulated Raman Scattering and Optical Parametric Amplification on Wavelength Exchange. , 2006, , .		3
261	Simultaneous all-optical inverted and noninverted wavelength conversion using a single-stage fiber-optical parametric amplifier. IEEE Photonics Technology Letters, 2006, 18, 1442-1444.	2.5	8
262	Image Mosaicking with Optimized Matching of Global and Local Contents., 2006,,.		1
263	Automatic source camera identification using the intrinsic lens radial distortion. Optics Express, 2006, 14, 11551.	3.4	117
264	Source camera identification using footprints from lens aberration., 2006, 6069, 172.		102
265	Continuous Dynamic Spinal Motion Analysis. Spine, 2006, 31, 414-419.	2.0	96
266	Curvature Domain Image Stitching. , 2006, , .		3
267	Feature Selection in Source Camera Identification. , 2006, , .		3
268	Polarization-interleaved WDM signals in a fiber optical parametric amplifier with orthogonal pumps., 2006,,.		0
269	Pump-to-signal transfer of low-frequency intensity modulation in fiber optical parametric amplifiers. Journal of Lightwave Technology, 2005, 23, 1049-1055.	4.6	37
270	Transmission of optical communication signals by distributed parametric amplification. Journal of Lightwave Technology, 2005, 23, 2945-2953.	4.6	18

#	Article	IF	CITATIONS
271	Wide-Band Tuning of the Gain Spectra of One-Pump Fiber Optical Parametric Amplifiers. IEEE Journal of Selected Topics in Quantum Electronics, 2004, 10, 1133-1141.	2.9	202
272	Toward Practical Fiber Optical Parametric Amplifiers and Oscillators. Optics and Photonics News, 2004, 15, 20.	0.5	23
273	Novel in-service wavelength-band upgrade scheme for fiber Raman amplifier. IEEE Photonics Technology Letters, 2003, 15, 27-29.	2.5	11
274	Continuous-wave fiber optical parametric amplifier with 60-dB gain using a novel two-segment design. IEEE Photonics Technology Letters, 2003, 15, 1707-1709.	2.5	62
275	Continuous-wave fiber optical parametric wavelength converter with +40-dB conversion efficiency and a 38-dB noise figure. Optics Letters, 2003, 28, 692.	3.3	63
276	Fiber optical parametric amplifiers with linearly or circularly polarized waves. Journal of the Optical Society of America B: Optical Physics, 2003, 20, 2425.	2.1	32
277	Fibre optical parametric amplifiers with circularly-polarised pumps. Electronics Letters, 2003, 39, 350.	1.0	10
278	Continuous-wave fiber optical parametric oscillator. Optics Letters, 2002, 27, 1439.	3.3	96
279	Narrow-linewidth idler generation in fiber four-wave mixing and parametric amplification by dithering two pumps in opposition of phase. Journal of Lightwave Technology, 2002, 20, 469-476.	4.6	87
280	Polarization-independent two-pump fiber optical parametric amplifier. IEEE Photonics Technology Letters, 2002, 14, 911-913.	2.5	139
281	92% pump depletion in a continuous-wave one-pump fiber optical parametric amplifier. Optics Letters, 2001, 26, 620.	3.3	62
282	Quantized spiral phase modulation based deep learning for real-time defocusing distance prediction. Optics Express, 0, , .	3.4	0
283	Dynamics of dissipative soliton molecules in a dual-wavelength ultrafast fiber laser. Optics Express, 0,	3.4	10