Rajadurai Chandrasekar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9580235/publications.pdf

Version: 2024-02-01

94 papers 3,643 citations

34 h-index 56 g-index

101 all docs

101 docs citations

times ranked

101

2528 citing authors

#	Article	IF	CITATIONS
1	Reversibly Shapeâ€Shifting Organic Optical Waveguides: Formation of Organic Nanorings, Nanotubes, and Nanosheets. Angewandte Chemie - International Edition, 2012, 51, 3556-3561.	13.8	196
2	Mechanophotonics: Flexible Singleâ€Crystal Organic Waveguides and Circuits. Angewandte Chemie - International Edition, 2020, 59, 13852-13858.	13.8	184
3	Micro―and Nanopatterning of Spinâ€Transition Compounds into Logical Structures. Angewandte Chemie - International Edition, 2008, 47, 8596-8600.	13.8	155
4	Organic photonics: prospective nano/micro scale passive organic optical waveguides obtained from π-conjugated ligand molecules. Physical Chemistry Chemical Physics, 2014, 16, 7173.	2.8	139
5	Nextâ€Generation Organic Photonics: The Emergence of Flexible Crystal Optical Waveguides. Advanced Optical Materials, 2020, 8, 2000959.	7.3	134
6	Micromanipulation of Mechanically Compliant Organic Singleâ€Crystal Optical Microwaveguides. Angewandte Chemie - International Edition, 2020, 59, 13821-13830.	13.8	129
7	Organic Submicro Tubular Optical Waveguides: Selfâ€Assembly, Diverse Geometries, Efficiency, and Remote Sensing Properties. Advanced Optical Materials, 2013, 1, 305-311.	7.3	114
8	Switching of a coupled spin pair in a single-molecule junction. Nature Nanotechnology, 2013, 8, 575-579.	31.5	107
9	Photonic Microrods Composed of Photoswitchable Molecules: Erasable Heterostructure Waveguides for Tunable Optical Modulation. Advanced Optical Materials, 2015, 3, 1035-1040.	7.3	86
10	Twoâ€Photon Luminescence and Secondâ€Harmonic Generation in Organic Nonlinear Surface Comprised of Selfâ€Assembled Frustum Shaped Organic Microlasers. Advanced Materials, 2017, 29, 1605260.	21.0	75
11	Mechanically Reconfigurable Organic Photonic Integrated Circuits Made from Two Electronically Different Flexible Microcrystals. Advanced Functional Materials, 2021, 31, 2100642.	14.9	74
12	Tuning the spin-transition properties of pyrene-decorated 2,6-bispyrazolylpyridine based Fe(ii) complexes. Dalton Transactions, 2011, 40, 7564.	3.3	73
13	Spin Transition in a Chainlike Supramolecular Iron(II) Complex. Inorganic Chemistry, 2006, 45, 10019-10021.	4.0	71
14	Advanced Organic and Polymer Whisperingâ€Galleryâ€Mode Microresonators for Enhanced Nonlinear Optical Light. Advanced Optical Materials, 2018, 6, 1800343.	7.3	70
15	Ordering and Stabilization of Metal–Organic Coordination Chains by Hierarchical Assembly through Hydrogen Bonding at a Surface. Angewandte Chemie - International Edition, 2008, 47, 8835-8838.	13.8	68
16	Light Propagation in Highâ€Spin Organic Microtubes Selfâ€Assembled from Shape Persistent Macrocycles Carrying Oxoâ€Verdazyl Biradicals. Advanced Materials, 2013, 25, 2963-2967.	21.0	65
17	Engineering the Selfâ€Assembly of DCM Dyes into Whisperingâ€Galleryâ€Mode μâ€Hemispheres and Fabry–PÄ"rotâ€Type μâ€Rods for Visible–NIR (600–875 nm) Range Optical Microcavities. Advanced Optic Materials, 2016, 4, 112-119.	ca †. 3	64
18	Mechanophotonics—Mechanical Micromanipulation of Singleâ€Crystals toward Organic Photonic Integrated Circuits. Small, 2021, 17, e2100277.	10.0	64

#	Article	lF	Citations
19	Passive optical waveguiding organic rectangular tubes: tube cutting, controlling light propagation distance and multiple optical out-puts. Journal of Materials Chemistry C, 2014, 2, 1404.	5.5	60
20	Micromechanical Fabrication of Resonator Waveguides Integrated Fourâ€Port Photonic Circuit from Flexible Organic Single Crystals. Advanced Optical Materials, 2021, 9, 2100550.	7. 3	60
21	Assembling Isostructural Metalâ€Organic Coordination Architectures on Cu(100), Ag(100) and Ag(111) Substrates. ChemPhysChem, 2008, 9, 2495-2499.	2.1	56
22	Geometrically Reconfigurable, 2D, Allâ€Organic Photonic Integrated Circuits Made from Two Mechanically and Optically Dissimilar Crystals. Advanced Functional Materials, 2021, 31, 2105415.	14.9	54
23	"Click-Fluors― Synthesis of a Family of π-Conjugated Fluorescent Back-to-Back Coupled 2,6-Bis(triazol-1-yl)pyridines and Their Self-Assembly Studies. Journal of Organic Chemistry, 2010, 75, 4852-4855.	3.2	53
24	Chiralityâ€Controlled Multiphoton Luminescence and Secondâ€Harmonic Generation from Enantiomeric Organic Microâ€Optical Waveguides. Advanced Optical Materials, 2019, 7, 1801775.	7. 3	53
25	Planar Active Organic Waveguide and Wavelength Filter: Self-Assembled meso-Tetratolylporphyrin Hexagonal Nanosheet. ACS Applied Materials & Samp; Interfaces, 2014, 6, 1488-1494.	8.0	51
26	Mechanophotonics $\hat{a}\in$ " a guide to integrating microcrystals toward monolithic and hybrid all-organic photonic circuits. Chemical Communications, 2022, 58, 3415-3428.	4.1	49
27	Multiluminescent Hybrid Organic/Inorganic Nanotubular Structures: Oneâ€Pot Fabrication of Tricolor (Blue–Red–Purple) Luminescent Parallepipedic Organic Superstructure Grafted with Europium Complexes. Advanced Functional Materials, 2011, 21, 667-673.	14.9	48
28	Whiteâ€Emitting Conjugated Polymer/Inorganic Hybrid Spheres: Phenylethynyl and 2,6â€Bis(pyrazolyl)pyridine Copolymer Coordinated to Eu(tta) ₃ . Advanced Functional Materials, 2013, 23, 5875-5880.	14.9	47
29	Engineering self-assembled fluorescent organic nanotapes and submicrotubes from π-conjugated molecules. Chemical Communications, 2010, 46, 2915.	4.1	44
30	Supramolecular lattice-solvent control of iron(ii) spin transition parameters. CrystEngComm, 2010, 12, 2361.	2.6	43
31	Single-particle to single-particle transformation of an active type organic $\hat{l}\frac{1}{4}$ -tubular homo-structure photonic resonator into a passive type hetero-structure resonator. Physical Chemistry Chemical Physics, 2016, 18, 15528-15533.	2.8	43
32	Selective Coordination Bonding in Metalloâ€Supramolecular Systems on Surfaces. Angewandte Chemie - International Edition, 2012, 51, 4327-4331.	13.8	40
33	Chiral organic photonics: self-assembled micro-resonators for an enhanced circular dichroism effect in the non-linear optical signal. Journal of Materials Chemistry C, 2017, 5, 12349-12353.	5. 5	40
34	Mechanophotonics: Flexible Singleâ€Crystal Organic Waveguides and Circuits. Angewandte Chemie, 2020, 132, 13956-13962.	2.0	37
35	Ambient Pressure Sublimation Technique Provides Polymorphâ€Selective Perylene Nonlinear Optical Microcavities. Advanced Optical Materials, 2020, 8, 1901317.	7. 3	36
36	Mechanical Processing of Naturally Bent Organic Crystalline Microoptical Waveguides and Junctions. Small, 2021, 17, e2006795.	10.0	36

#	Article	IF	CITATIONS
37	Vapourâ€Phase Epitaxial Growth of Dualâ€Colourâ€Emitting DCMâ€Perylene Microâ€Heterostructure Optical Waveguides. Chemistry - an Asian Journal, 2019, 14, 4577-4581.	3.3	32
38	An Iron(II) Spinâ€Transition Compound with Thiol Anchoring Groups. European Journal of Inorganic Chemistry, 2008, 2008, 2649-2653.	2.0	31
39	Flexible and Optically Transparent Polymer Embedded Nano/Micro Scale Spin Crossover Fe(II) Complex Patterns/Arrays. Chemistry of Materials, 2013, 25, 3408-3413.	6.7	30
40	White Light Emitting Films from Eu(III) Complexed Copolymers of Alternating Fluorene and Bis(pyrazolyl)pyridine Derivatives. Macromolecules, 2013, 46, 362-369.	4.8	30
41	Micromanipulation of Mechanically Compliant Organic Singleâ€Crystal Optical Microwaveguides. Angewandte Chemie, 2020, 132, 13925-13934.	2.0	30
42	Terahertz radiation and second-harmonic generation from a single-component polar organic ferroelectric crystal. Journal of Materials Chemistry C, 2018, 6, 9330-9335.	5.5	28
43	Polymorphism and microcrystal shape dependent luminescence, optical waveguiding and resonator properties of coumarin-153. Journal of Materials Chemistry C, 2017, 5, 7262-7269.	5.5	27
44	Micropatterning of Metallopolymers: Syntheses of Back-to-Back Coupled Octylated 2,6-Bis(pyrazolyl)pyridine Ligands and Their Solution-Processable Coordination Polymers. Journal of Organic Chemistry, 2012, 77, 3620-3626.	3.2	26
45	Tuning the Solid State Emission of Thin Films/Microspheres Obtained from Alternating Oligo(3-octylthiophenes) and 2,6-Bis(pyrazole)pyridine Copolymers by Varying Conjugation Length and Eu ³⁺ /Tb ³⁺ Metal Coordination. Macromolecules, 2015, 48, 4801-4812.	4.8	26
46	Integrating Triply―and Singlyâ€Bent Highly Flexible Crystal Optical Waveguides for Organic Photonic Circuit with a Longâ€Passâ€Filter Effect. Small Structures, 2022, 3, .	12.0	25
47	Synthesis, crystal structure and magnetism of centrosymmetric linear trinuclear copper(II) complex of pyridine nitronyl nitroxide derivative. Inorganica Chimica Acta, 2004, 357, 581-587.	2.4	24
48	Visible–Near-Infrared Range Whispering Gallery Resonance from Photonic Î⅓-Sphere Cavities Self-Assembled from a Blend of Polystyrene and Poly[4,7-bis(3-octylthiophene-2-yl)benzothiadiazole- <i>co</i> -2,6-bis(pyrazolyl)pyridine] Coordinated to Tb(acac) ₃ . ACS Applied Materials & Interfaces, 2016, 8, 952-958.	8.0	23
49	2D Arrangement of Polymer Microsphere Photonic Cavities Doped with Novel Nâ€Rich Carbon Quantum Dots Display Enhanced One―and Twoâ€Photon Luminescence Driven by Optical Resonances. Advanced Optical Materials, 2017, 5, 1700695.	7.3	21
50	Mechanical Actuation and Patterning of Rewritable Crystalline Monomerâ ⁻ 'Polymer Heterostructures via Topochemical Polymerization in a Dual-Responsive Photochromic Organic Material. ACS Applied Materials & Samp; Interfaces, 2020, 12, 16856-16863.	8.0	21
51	Multifunctional Chiral Ï€â€Conjugated Polymer Microspheres: Production and Confinement of NLO signal, Detection of Circularly Polarized Light, and Display of Laserâ€Triggered NLO Emission Shifts. Advanced Optical Materials, 2020, 8, 2000431.	7.3	21
52	Micromechanicallyâ€Powered Rolling Locomotion of a Twistedâ€Crystal Opticalâ€Waveguide Cavity as a Mobile Light Polarization Rotor. Angewandte Chemie - International Edition, 2022, 61, .	13.8	21
53	Two- to one-dimensional transition of self-assembled coordination networks at surfaces by organic ligand addition. Chemical Communications, 2009, , 2502.	4.1	20
54	The Photonic Side of Curcumin: Microsphere Resonators Selfâ€Assembled from Curcumin Derivatives Emitting Visible/Nearâ€Infrared Light. Advanced Optical Materials, 2017, 5, 1600613.	7.3	20

#	Article	IF	Citations
55	Realization of Mechanically Maneuverable Circuit Ports in Organic Hybrid Photonic Chip for 360° Steering of Bandwidthâ€Engineered Signals. Advanced Optical Materials, 2022, 10, .	7.3	20
56	A Twoâ€Photon Pumped Supramolecular Upconversion Microresonator. ChemNanoMat, 2018, 4, 764-768.	2.8	19
57	Room-temperature phosphorescent organic materials for optical waveguides. Journal of Materials Chemistry C, 2021, 9, 14115-14132.	5.5	18
58	Hierarchical multicolor nano-pixel matrices formed by coordinating luminescent metal ions to a conjugated poly(4′-octyl-2′,6′-bispyrazoyl pyridine) film via contact printing. Scientific Reports, 2015, 5, 8406.	3.3	17
59	Photonic Microresonators from Charge Transfer in Polymer Particles: Toward Enhanced and Tunable Two-Photon Emission. ACS Applied Materials & Interfaces, 2018, 10, 16723-16730.	8.0	17
60	Metal-Biradical Chains from a High-Spin Ligand and Bis(hexafluoroacetylacetonato)copper(II). Inorganic Chemistry, 2006, 45, 9664-9669.	4.0	16
61	Triple Emission from Organic/Inorganic Hybrid Nanovesicles in a Single Excitation. ChemPhysChem, 2011, 12, 2391-2396.	2.1	16
62	Passive optical waveguiding tubular pharmaceutical solids and Raman spectroscopy/mapping of nano-/micro-scale defects. CrystEngComm, 2014, 16, 4696.	2.6	16
63	(Polypyridyl)ruthenium(II) Complexes Based on a <i>Backâ€toâ€Back</i> Bis(pyrazolylpyridine) Bridging Ligand. European Journal of Inorganic Chemistry, 2009, 2009, 53-61.	2.0	15
64	"Super hybrid tridentate ligands― 4-substituted-2-(1-butyl-1H-1,2,3-triazol-4-yl)-6-(1H-pyrazol-1-yl)pyridine ligands coordinated to Fe(ii) ions display above room temperature spin transitions. Dalton Transactions, 2010, 39, 9872.	3.3	15
65	High Optical Energy Storage and Two-Photon Luminescence from Solution-Processed Perovskite-Polystyrene Composite Microresonators. ACS Applied Energy Materials, 2019, 2, 428-435.	5.1	15
66	Mechanophotonic aspects of a room temperature phosphorescent flexible organic microcrystal. CrystEngComm, 2021, 23, 5774-5779.	2.6	15
67	Syntheses, optical and intramolecular magnetic properties of mono- and di-radicals based on nitronyl-nitroxide and oxoverdazyl groups appended to 2,6-bispyrazolylpyridine cores. Organic and Biomolecular Chemistry, 2012, 10, 2439.	2.8	14
68	Magnetic Interactions in Supramolecular NO···HC⋮C Type Hydrogen-Bonded Nitronylnitroxide Radical Chains. Journal of Physical Chemistry B, 2007, 111, 4327-4334.	2.6	13
69	Mechanophotonics: precise selection, assembly and disassembly of polymer optical microcavities <i>via</i> mechanical manipulation for spectral engineering. Nanoscale Advances, 2020, 2, 5584-5590.	4.6	13
70	Adaptable Optical Microwaveguides From Mechanically Flexible Crystalline Materials. Chemistry - A European Journal, 2022, 28, .	3.3	12
71	Hot-exciton harvesting <i>via</i> through-space single-molecule based white-light emission and optical waveguides. Chemical Science, 2022, 13, 9004-9015.	7.4	12
72	Lithographically organized 1D nano-tape arrays composed of solution processable above room temperature spin cross-over Fe(<scp>ii</scp>) coordination polymer. RSC Advances, 2014, 4, 34760.	3.6	11

#	Article	IF	Citations
7 3	Enhanced nonlinear optical effects in organic frustum-shaped microresonators. Laser Physics Letters, 2017, 14, 035403.	1.4	8
74	Polymorphism and metal-induced structural transformation in $5,5\hat{a}\in^2$ -bis(4-pyridyl)(2,2 $\hat{a}\in^2$ -bispyrimidine) adlayers on Au(111). Physical Chemistry Chemical Physics, 2018, 20, 15960-15969.	2.8	8
7 5	Whispering gallery modes in two-photon fluorescence from spherical DCM dye microresonators. Laser Physics Letters, 2018, 15, 035401.	1.4	8
76	A supramolecular network of 2-(4,4,5,5-tetramethyl-3-oxylimidazoline-1-oxide)-5-bromopyridine built throughπ-πstacking and hydrogen bonding interactions. Journal of Physical Organic Chemistry, 2006, 19, 257-262.	1.9	6
77	Chirality driven effects in multiphoton excited whispering gallery mode microresonators prepared by a self-assembly technique. Laser Physics Letters, 2020, 17, 036201.	1.4	6
78	Micromechanicallyâ€Powered Rolling Locomotion of a Twistedâ€Crystal Opticalâ€Waveguide Cavity as a Mobile Light Polarization Rotor. Angewandte Chemie, 2022, 134, .	2.0	6
79	Selfâ€Assembly of "Chalcone―Type Pushâ€Pull Dye Molecules into Organic Single Crystalline Microribbons and Rigid Microrods for Vis/NIR Range Photonic Cavity Applications. ChemPhysChem, 2016, 17, 3435-3441.	2.1	5
80	Regioselective, One-Pot Syntheses of Symmetrically and Unsymmetrically Halogenated 2′,6′-Bispyrazolylpyridines. Synthesis, 2009, 2009, 4042-4048.	2.3	4
81	Spatiotemporal Growth Anomalies in Photoisomerizable Cyanostilbene-Based Crystals Triggered by Light. Journal of Physical Chemistry C, 2021, 125, 4909-4916.	3.1	4
82	Magnetic Field–Assisted Manipulation of Polymer Optical Microcavities. Advanced Photonics Research, 2021, 2, 2000146.	3.6	4
83	Hierarchical lithographic patterning of two abrupt spin cross-over Fe(II) complexes into micro-cross-stripes. Journal of Chemical Sciences, 2018, 130, 1.	1.5	3
84	Polarised Optical Emission from Organic Anisotropic Microoptical Waveguides Grown by Ambient Pressure Vapourâ€deposition. Chemistry - an Asian Journal, 2021, 16, 3476-3480.	3.3	3
85	Shapeâ€Defined and Shapeâ€Shifting Paramagnetic Organic Nano/Microstructures Derived From a Doublet State Nitronyl Nitroxide Radical. ChemPlusChem, 2012, 77, 1062-1065.	2.8	2
86	Fabrication of Highâ€Resolution 4,8 ² â€Type Archimedean Nanolattices Composed of Solution Processable Spin Crossâ€Over Fe(II) Metallosupramolecular Polymers. Macromolecular Rapid Communications, 2015, 36, 647-653.	3.9	2
87	Direct micro-scale monitoring of molecular aggregation, its growth and diffusion <i>via</i> aggregation-induced emission. Soft Matter, 2020, 16, 2664-2668.	2.7	2
88	Laser intensity-dependent nonlinear-optical effects in organic whispering gallery mode cavity microstructures. Optics Letters, 2020, 45, 4622.	3.3	2
89	Optical Waveguiding Organic Nanorods Coated with Reversibly Switchable Fe(II) Spin Transition Nanoparticles. Indian Journal of Materials Science, 2013, 2013, 1-7.	0.6	1
90	Waveguides: Photonic Microrods Composed of Photoswitchable Molecules: Erasable Heterostructure Waveguides for Tunable Optical Modulation (Advanced Optical Materials 8/2015). Advanced Optical Materials, 2015, 3, 1034-1034.	7. 3	1

#	Article	IF	CITATIONS
91	Inside Cover: Ordering and Stabilization of Metal-Organic Coordination Chains by Hierarchical Assembly through Hydrogen Bonding at a Surface (Angew. Chem. Int. Ed. 46/2008). Angewandte Chemie - International Edition, 2008, 47, 8752-8752.	13.8	O
92	Innentitelbild: Ordering and Stabilization of Metal-Organic Coordination Chains by Hierarchical Assembly through Hydrogen Bonding at a Surface (Angew. Chem. 46/2008). Angewandte Chemie, 2008, 120, 8880-8880.	2.0	O
93	Regioselective, One-Pot Syntheses of Symmetrically and Unsymmetrically Halogenated 2′,6′-Bispyrazolylpyridines. Synthesis, 2009, 2009, e9-e9.	2.3	0
94	Organic Nanovesicular Cargoes for Sustained Drug Delivery: Synthesis, Vesicle Formation, Controlling "Pearling―States, and Terfenadine Loading/Release Studies. Journal of Nanotechnology, 2014, 2014, 1-13.	3.4	0