Emily Bernhardt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9580080/publications.pdf Version: 2024-02-01

FMILY REDNHADDT

#	Article	IF	CITATIONS
1	ECOLOGY: Synthesizing U.S. River Restoration Efforts. Science, 2005, 308, 636-637.	12.6	1,552
2	Standards for ecologically successful river restoration. Journal of Applied Ecology, 2005, 42, 208-217.	4.0	1,221
3	Effect of Surfactants and Polymers on Stability and Antibacterial Activity of Silver Nanoparticles (NPs). Journal of Physical Chemistry C, 2008, 112, 5825-5834.	3.1	812
4	River restoration, habitat heterogeneity and biodiversity: a failure of theory or practice?. Freshwater Biology, 2010, 55, 205-222.	2.4	715
5	Enhanced root exudation induces microbial feedbacks to N cycling in a pine forest under longâ€ŧerm CO ₂ fumigation. Ecology Letters, 2011, 14, 187-194.	6.4	618
6	More than the Ions: The Effects of Silver Nanoparticles on <i>Lolium multiflorum</i> . Environmental Science & Technology, 2011, 45, 2360-2367.	10.0	494
7	Mountaintop Mining Consequences. Science, 2010, 327, 148-149.	12.6	472
8	Synthetic chemicals as agents of global change. Frontiers in Ecology and the Environment, 2017, 15, 84-90.	4.0	457
9	ECOLOGY: Ecology for a Crowded Planet. Science, 2004, 304, 1251-1252.	12.6	440
10	Restoring streams in an urbanizing world. Freshwater Biology, 2007, 52, 738-751.	2.4	383
11	Restoring Rivers One Reach at a Time: Results from a Survey of U.S. River Restoration Practitioners. Restoration Ecology, 2007, 15, 482-493.	2.9	382
12	Increases in the flux of carbon belowground stimulate nitrogen uptake and sustain the long-term enhancement of forest productivity under elevated CO2. Ecology Letters, 2011, 14, 349-357.	6.4	374
13	Sulfidation of Silver Nanoparticles: Natural Antidote to Their Toxicity. Environmental Science & Technology, 2013, 47, 13440-13448.	10.0	364
14	Long-Term Transformation and Fate of Manufactured Ag Nanoparticles in a Simulated Large Scale Freshwater Emergent Wetland. Environmental Science & Technology, 2012, 46, 7027-7036.	10.0	351
15	River restoration: the fuzzy logic of repairing reaches to reverse catchment scale degradation. , 2011, 21, 1926-1931.		347
16	Twenty-six key research questions in urban stream ecology: an assessment of the state of the science. Journal of the North American Benthological Society, 2009, 28, 1080-1098.	3.1	312
17	Decreasing Uncertainties in Assessing Environmental Exposure, Risk, and Ecological Implications of Nanomaterials. Environmental Science & Technology, 2009, 43, 6458-6462.	10.0	311
18	Effects of Silver Nanoparticle Exposure on Germination and Early Growth of Eleven Wetland Plants. PLoS ONE, 2012, 7, e47674.	2.5	288

#	Article	IF	CITATIONS
19	Control Points in Ecosystems: Moving Beyond the Hot Spot Hot Moment Concept. Ecosystems, 2017, 20, 665-682.	3.4	284
20	Low Concentrations of Silver Nanoparticles in Biosolids Cause Adverse Ecosystem Responses under Realistic Field Scenario. PLoS ONE, 2013, 8, e57189.	2.5	284
21	Stream restoration strategies for reducing river nitrogen loads. Frontiers in Ecology and the Environment, 2008, 6, 529-538.	4.0	251
22	Roots and fungi accelerate carbon and nitrogen cycling in forests exposed to elevated CO ₂ . Ecology Letters, 2012, 15, 1042-1049.	6.4	251
23	The metabolic regimes of flowing waters. Limnology and Oceanography, 2018, 63, S99.	3.1	247
24	DISSOLVED ORGANIC CARBON ENRICHMENT ALTERS NITROGEN DYNAMICS IN A FOREST STREAM. Ecology, 2002, 83, 1689-1700.	3.2	230
25	Effects of urbanization and urban stream restoration on the physical and biological structure of stream ecosystems. , 2011, 21, 1932-1949.		221
26	Cumulative impacts of mountaintop mining on an Appalachian watershed. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 20929-20934.	7.1	221
27	New approach for capturing soluble root exudates in forest soils. Functional Ecology, 2008, 22, 990-999.	3.6	219
28	ENVIRONMENTAL CONTROLS ON THE LANDSCAPE-SCALE BIOGEOGRAPHY OF STREAM BACTERIAL COMMUNITIES. Ecology, 2007, 88, 2162-2173.	3.2	216
29	Relating nutrient uptake with transient storage in forested mountain streams. Limnology and Oceanography, 2002, 47, 255-265.	3.1	212
30	River Restoration in the Twentyâ€First Century: Data and Experiential Knowledge to Inform Future Efforts. Restoration Ecology, 2007, 15, 472-481.	2.9	206
31	How Many Mountains Can We Mine? Assessing the Regional Degradation of Central Appalachian Rivers by Surface Coal Mining. Environmental Science & Technology, 2012, 46, 8115-8122.	10.0	197
32	Toxicity Reduction of Polymer-Stabilized Silver Nanoparticles by Sunlight. Journal of Physical Chemistry C, 2011, 115, 4425-4432.	3.1	190
33	Can't See the Forest for the Stream? In-stream Processing and Terrestrial Nitrogen Exports. BioScience, 2005, 55, 219.	4.9	178
34	Understanding how microbiomes influence the systems they inhabit. Nature Microbiology, 2018, 3, 977-982.	13.3	169
35	An Ecological Perspective on Nanomaterial Impacts in the Environment. Journal of Environmental Quality, 2010, 39, 1954-1965.	2.0	168
36	The interactive effects of excess reactive nitrogen and climate change on aquatic ecosystems and water resources of the United States. Biogeochemistry, 2013, 114, 71-92.	3.5	162

Emily Bernhardt

#	Article	IF	CITATIONS
37	A multiyear synthesis of soil respiration responses to elevated atmospheric CO2 from four forest FACE experiments. Global Change Biology, 2004, 10, 1027-1042.	9.5	155
38	The Invisible Flood: The Chemistry, Ecology, and Social Implications of Coastal Saltwater Intrusion. BioScience, 2019, 69, 368-378.	4.9	151
39	In-stream uptake dampens effects of major forest disturbance on watershed nitrogen export. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 10304-10308.	7.1	147
40	Understanding, Managing, and Minimizing Urban Impacts on Surface Water Nitrogen Loading. Annals of the New York Academy of Sciences, 2008, 1134, 61-96.	3.8	147
41	Two Decades of River Restoration in California: What Can We Learn?. Restoration Ecology, 2007, 15, 516-523.	2.9	146
42	Droughtâ€induced saltwater incursion leads to increased wetland nitrogen export. Global Change Biology, 2013, 19, 2976-2985.	9.5	143
43	Linking microbial community structure and microbial processes: an empirical and conceptual overview. FEMS Microbiology Ecology, 2015, 91, fiv113.	2.7	143
44	Emerging Contaminant or an Old Toxin in Disguise? Silver Nanoparticle Impacts on Ecosystems. Environmental Science & Technology, 2014, 48, 5229-5236.	10.0	138
45	Whole-system Estimates of Nitrification and Nitrate Uptake in Streams of the Hubbard Brook Experimental Forest. Ecosystems, 2002, 5, 419-430.	3.4	134
46	The environmental costs of mountaintop mining valley fill operations for aquatic ecosystems of the Central Appalachians. Annals of the New York Academy of Sciences, 2011, 1223, 39-57.	3.8	134
47	Elevated CO2 increases root exudation from loblolly pine (Pinus taeda) seedlings as an N-mediated response. Tree Physiology, 2009, 29, 1513-1523.	3.1	131
48	The role of vegetation in methane flux to the atmosphere: should vegetation be included as a distinct category in the global methane budget?. Biogeochemistry, 2014, 119, 1-24.	3.5	129
49	Ecological science and sustainability for the 21st century. Frontiers in Ecology and the Environment, 2005, 3, 4-11.	4.0	127
50	INTERACTIONS BETWEEN HERBIVOROUS FISHES AND LIMITING NUTRIENTS IN A TROPICAL STREAM ECOSYSTEM. Ecology, 2002, 83, 1831-1844.	3.2	124
51	Hydroecology and river restoration: Ripe for research and synthesis. Water Resources Research, 2006, 42, .	4.2	124
52	Testing the Field of Dreams Hypothesis: functional responses to urbanization and restoration in stream ecosystems. , 2011, 21, 1972-1988.		117
53	Streams in the urban heat island: spatial and temporal variability in temperature. Freshwater Science, 2013, 32, 309-326.	1.8	111
54	Long-term Effects of Free Air CO2 Enrichment (FACE) on Soil Respiration. Biogeochemistry, 2006, 77, 91-116.	3.5	109

#	Article	IF	CITATIONS
55	Bacterial community responses to a gradient of alkaline mountaintop mine drainage in Central Appalachian streams. ISME Journal, 2015, 9, 1378-1390.	9.8	108
56	Hydrologic spiralling: the role of multiple interactive flow paths in stream ecosystems. River Research and Applications, 2008, 24, 1018-1031.	1.7	107
57	Nitrogen Dynamics in Ice Storm-Damaged Forest Ecosystems: Implications for Nitrogen Limitation Theory. Ecosystems, 2003, 6, 431-443.	3.4	105
58	Thinking outside the channel: modeling nitrogen cycling in networked river ecosystems. Frontiers in Ecology and the Environment, 2011, 9, 229-238.	4.0	104
59	Environmental Occurrences, Behavior, Fate, and Ecological Effects of Nanomaterials: An Introduction to the Special Series. Journal of Environmental Quality, 2010, 39, 1867-1874.	2.0	99
60	Greenhouse gas fluxes in southeastern U.S. coastal plain wetlands under contrasting land uses. , 2012, 22, 264-280.		93
61	Restoring watersheds project by project: trends in Chesapeake Bay tributary restoration. Frontiers in Ecology and the Environment, 2005, 3, 259-267.	4.0	92
62	Fertilizer Management and Environmental Factors Drive N ₂ O and NO ₃ Losses in Corn: A Metaâ€Analysis. Soil Science Society of America Journal, 2017, 81, 1191-1202.	2.2	91
63	Outdoor urban nanomaterials: The emergence of a new, integrated, and critical field of study. Science of the Total Environment, 2016, 557-558, 740-753.	8.0	90
64	Scoured or suffocated: Urban stream ecosystems oscillate between hydrologic and dissolved oxygen extremes. Limnology and Oceanography, 2019, 64, 877-894.	3.1	87
65	Controls on periphyton biomass in heterotrophic streams. Freshwater Biology, 2004, 49, 14-27.	2.4	84
66	Reducing Environmental Toxicity of Silver Nanoparticles through Shape Control. Environmental Science & Technology, 2015, 49, 10093-10098.	10.0	83
67	Deep Impact: Effects of Mountaintop Mining on Surface Topography, Bedrock Structure, and Downstream Waters. Environmental Science & Technology, 2016, 50, 2064-2074.	10.0	82
68	The Water Quality Consequences of Restoring Wetland Hydrology to a Large Agricultural Watershed in the Southeastern Coastal Plain. Ecosystems, 2010, 13, 1060-1078.	3.4	81
69	The Precision Problem in Conservation and Restoration. Trends in Ecology and Evolution, 2016, 31, 820-830.	8.7	81
70	Mapping the yearly extent of surface coal mining in Central Appalachia using Landsat and Google Earth Engine. PLoS ONE, 2018, 13, e0197758.	2.5	81
71	Using 15N tracers to estimate N2O and N2 emissions from nitrification and denitrification in coastal plain wetlands under contrasting land-uses. Soil Biology and Biochemistry, 2013, 57, 635-643.	8.8	76
72	Thermodynamic constraints on the utility of ecological stoichiometry for explaining global biogeochemical patterns. Ecology Letters, 2015, 18, 1049-1056.	6.4	74

Emily Bernhardt

#	Article	IF	CITATIONS
73	Global change: The nitrogen cycle and rivers. Water Resources Research, 2006, 42, .	4.2	73
74	Invasive species' leaf traits and dissimilarity from natives shape their impact on nitrogen cycling: a metaâ€analysis. New Phytologist, 2017, 213, 128-139.	7.3	69
75	Gold nanoparticle biodissolution by a freshwater macrophyte and its associated microbiome. Nature Nanotechnology, 2018, 13, 1072-1077.	31.5	68
76	Amazon forests capture high levels of atmospheric mercury pollution from artisanal gold mining. Nature Communications, 2022, 13, 559.	12.8	67
77	The metabolic regimes of 356 rivers in the United States. Scientific Data, 2018, 5, 180292.	5.3	65
78	Antimicrobial effects of commercial silver nanoparticles are attenuated in natural streamwater and sediment. Ecotoxicology, 2012, 21, 1867-1877.	2.4	64
79	Drought and saltwater incursion synergistically reduce dissolved organic carbon export from coastal freshwater wetlands. Biogeochemistry, 2016, 127, 411-426.	3.5	62
80	Light and flow regimes regulate the metabolism of rivers. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	62
81	In search of microbial indicator taxa: shifts in stream bacterial communities along an urbanization gradient. Environmental Microbiology, 2019, 21, 3653-3668.	3.8	61
82	The ecology and economics of restoration: when, what, where, and how to restore ecosystems. Ecology and Society, 2018, 23, .	2.3	58
83	Salinity effects on greenhouse gas emissions from wetland soils are contingent upon hydrologic setting: a microcosm experiment. Biogeochemistry, 2018, 140, 217-232.	3.5	58
84	Perspective: The challenge of ecologically sustainable water management. Water Policy, 2006, 8, 475-479.	1.5	57
85	Rare microbial taxa emerge when communities collide: freshwater and marine microbiome responses to experimental mixing. Ecology, 2020, 101, e02956.	3.2	57
86	Watershed Urbanization Alters the Composition and Function of Stream Bacterial Communities. PLoS ONE, 2011, 6, e22972.	2.5	57
87	Distinguishing dynamics of dissolved organic matter components in a forested stream using kinetic enrichments. Limnology and Oceanography, 2012, 57, 76-89.	3.1	56
88	Phosphorus export from a restored wetland ecosystem in response to natural and experimental hydrologic fluctuations. Journal of Geophysical Research, 2010, 115, .	3.3	54
89	Mechanisms driving the seasonality of catchment scale nitrate export: Evidence for riparian ecohydrologic controls. Water Resources Research, 2015, 51, 3982-3997.	4.2	54
90	Forest age, wood and nutrient dynamics in headwater streams of the Hubbard Brook Experimental Forest, NH. Earth Surface Processes and Landforms, 2007, 32, 1154-1163.	2.5	53

#	Article	IF	CITATIONS
91	Nitrate in watersheds: Straight from soils to streams?. Journal of Geophysical Research G: Biogeosciences, 2013, 118, 291-302.	3.0	53
92	River and Riparian Restoration in the Southwest: Results of the National River Restoration Science Synthesis Project. Restoration Ecology, 2007, 15, 550-562.	2.9	52
93	Stream Restoration Practices in the Southeastern United States. Restoration Ecology, 2007, 15, 573-583.	2.9	52
94	Size-Based Differential Transport, Uptake, and Mass Distribution of Ceria (CeO ₂) Nanoparticles in Wetland Mesocosms. Environmental Science & Technology, 2018, 52, 9768-9776.	10.0	52
95	Metabolic rhythms in flowing waters: An approach for classifying river productivity regimes. Limnology and Oceanography, 2019, 64, 1835-1851.	3.1	52
96	Rapid deforestation of a coastal landscape driven by seaâ€level rise and extreme events. Ecological Applications, 2021, 31, e02339.	3.8	52
97	Emergent productivity regimes of river networks. Limnology and Oceanography Letters, 2019, 4, 173-181.	3.9	50
98	Cleaner Lakes Are Dirtier Lakes. Science, 2013, 342, 205-206.	12.6	49
99	Importance of a Nanoscience Approach in the Understanding of Major Aqueous Contamination Scenarios: Case Study from a Recent Coal Ash Spill. Environmental Science & Technology, 2015, 49, 3375-3382.	10.0	48
100	Examining the coupling of carbon and nitrogen cycles in Appalachian streams: the role of dissolved organic nitrogen. Ecology, 2011, 92, 720-732.	3.2	47
101	Biogeochemical regime shifts in coastal landscapes: the contrasting effects of saltwater incursion and agricultural pollution on greenhouse gas emissions from a freshwater wetland. Biogeochemistry, 2014, 120, 133-147.	3.5	47
102	Acid rain mitigation experiment shifts a forested watershed from a net sink to a net source of nitrogen. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7580-7583.	7.1	46
103	Evaluating the effects of land-use change and future climate change on vulnerability of coastal landscapes to saltwater intrusion. Elementa, 2018, 6, .	3.2	45
104	Longâ€ŧerm data reveal patterns and controls on stream water chemistry in a forested stream: Walker Branch, Tennessee. Ecological Monographs, 2012, 82, 367-387.	5.4	44
105	Iron clad wetlands: Soil ironâ€sulfur buffering determines coastal wetland response to salt water incursion. Journal of Geophysical Research G: Biogeosciences, 2014, 119, 2209-2219.	3.0	44
106	Creating a More Perennial Problem? Mountaintop Removal Coal Mining Enhances and Sustains Saline Baseflows of Appalachian Watersheds. Environmental Science & Technology, 2017, 51, 8324-8334.	10.0	43
107	Pyrite Oxidation Drives Exceptionally High Weathering Rates and Geologic CO ₂ Release in Mountaintopâ€Mined Landscapes. Global Biogeochemical Cycles, 2018, 32, 1182-1194.	4.9	43
108	Frontiers in Ecosystem Ecology from a Community Perspective: The Future is Boundless and Bright. Ecosystems, 2016, 19, 753-770.	3.4	40

#	Article	IF	CITATIONS
109	What is a stream?. Environmental Science & amp; Technology, 2011, 45, 354-359.	10.0	38
110	Twenty years apart: Comparisons of DOM uptake during leaf leachate releases to Hubbard Brook Valley streams in 1979 versus 2000. Journal of Geophysical Research, 2008, 113, .	3.3	37
111	Do Two Wrongs Make a Right? Persistent Uncertainties Regarding Environmental Selenium–Mercury Interactions. Environmental Science & Technology, 2020, 54, 9228-9234.	10.0	37
112	Floodplain biogeochemical mosaics: A multidimensional view of alluvial soils. Journal of Geophysical Research G: Biogeosciences, 2014, 119, 1538-1553.	3.0	36
113	Designer Ecosystems: Incorporating Design Approaches into Applied Ecology. Annual Review of Environment and Resources, 2015, 40, 419-443.	13.4	36
114	Selenium Ecotoxicology in Freshwater Lakes Receiving Coal Combustion Residual Effluents: A North Carolina Example. Environmental Science & Technology, 2017, 51, 2418-2426.	10.0	36
115	Impacts of dreissenid mussel invasions on chlorophyll and total phosphorus in 25 lakes in the USA. Freshwater Biology, 2013, 58, 192-206.	2.4	34
116	Measuring and interpreting relationships between nutrient supply, demand, and limitation. Freshwater Science, 2018, 37, 448-455.	1.8	34
117	Artificial lake expansion amplifies mercury pollution from gold mining. Science Advances, 2020, 6, .	10.3	34
118	Climate Change Driving Widespread Loss of Coastal Forested Wetlands Throughout the North American Coastal Plain. Ecosystems, 2022, 25, 812-827.	3.4	34
119	Harmonizing across environmental nanomaterial testing media for increased comparability of nanomaterial datasets. Environmental Science: Nano, 2020, 7, 13-36.	4.3	32
120	Stream Restoration Databases and Case Studies: A Guide to Information Resources and Their Utility in Advancing the Science and Practice of Restoration. Restoration Ecology, 2006, 14, 177-186.	2.9	31
121	Engineered nanoparticles interact with nutrients to intensify eutrophication in a wetland ecosystem experiment. Ecological Applications, 2018, 28, 1435-1449.	3.8	30
122	Watershed urban development controls on urban streamwater chemistry variability. Biogeochemistry, 2019, 144, 61-84.	3.5	30
123	Using environmental variables and soil processes to forecast denitrification potential and nitrous oxide fluxes in coastal plain wetlands across different land uses. Journal of Geophysical Research, 2012, 117, .	3.3	29
124	Not all pavements lead to streams: variation in impervious surface connectivity affects urban stream ecosystems. Freshwater Science, 2018, 37, 673-684.	1.8	29
125	Differential Reactivity of Copper- and Gold-Based Nanomaterials Controls Their Seasonal Biogeochemical Cycling and Fate in a Freshwater Wetland Mesocosm. Environmental Science & Technology, 2020, 54, 1533-1544.	10.0	29
126	Dissolved organic carbon lability increases with water residence time in the alluvial aquifer of a river floodplain ecosystem. Journal of Geophysical Research G: Biogeosciences, 2015, 120, 693-706.	3.0	28

#	Article	IF	CITATIONS
127	Senegalese artisanal gold mining leads to elevated total mercury and methylmercury concentrations in soils, sediments, and rivers. Elementa, 2018, 6, .	3.2	28
128	Hydrologic Context Alters Greenhouse Gas Feedbacks of Coastal Wetland Salinization. Ecosystems, 2019, 22, 1108-1125.	3.4	28
129	Contaminant Subsidies to Riparian Food Webs in Appalachian Streams Impacted by Mountaintop Removal Coal Mining. Environmental Science & Technology, 2020, 54, 3951-3959.	10.0	28
130	Downstream Dissipation of Storm Flow Heat Pulses: A Case Study and its Landscape‣evel Implications. Journal of the American Water Resources Association, 2016, 52, 281-297.	2.4	26
131	Dosing, Not the Dose: Comparing Chronic and Pulsed Silver Nanoparticle Exposures. Environmental Science & Technology, 2018, 52, 10048-10056.	10.0	24
132	Pulling apart the urbanization axis: patterns of physiochemical degradation and biological response across stream ecosystems. Freshwater Science, 2018, 37, 653-672.	1.8	24
133	Thinking like a consumer: Linking aquatic basal metabolism and consumer dynamics. Limnology and Oceanography Letters, 2021, 6, 1-17.	3.9	23
134	Sediment chemistry of urban stormwater ponds and controls on denitrification. Ecosphere, 2018, 9, e02318.	2.2	22
135	Predicting highâ€frequency variation in stream solute concentrations with water quality sensors and machine learning. Hydrological Processes, 2021, 35, .	2.6	22
136	Effects of mountaintop removal coal mining on the diversity and secondary productivity of Appalachian rivers. Limnology and Oceanography, 2017, 62, 1754-1770.	3.1	20
137	The Environmental Price Tag on a Ton of Mountaintop Removal Coal. PLoS ONE, 2013, 8, e73203.	2.5	20
138	Estimating Above-Ground Carbon Biomass in a Newly Restored Coastal Plain Wetland Using Remote Sensing. PLoS ONE, 2013, 8, e68251.	2.5	19
139	Salt effects on carbon mineralization in southeastern coastal wetland soils of the United States. Geoderma, 2019, 339, 31-39.	5.1	19
140	Evaluating Stream Restoration in the Chesapeake Bay Watershed through Practitioner Interviews. Restoration Ecology, 2007, 15, 563-572.	2.9	18
141	Biofilm mediated uptake of selenium in streams with mountaintop coal mine drainage. Limnologica, 2017, 65, 10-13.	1.5	18
142	Beyond Selenium: Coal Combustion Residuals Lead to Multielement Enrichment in Receiving Lake Food Webs. Environmental Science & Technology, 2019, 53, 4119-4127.	10.0	18
143	Fertilizer legacies meet saltwater incursion: challenges and constraints for coastal plain wetland restoration. Elementa, 2017, 5, .	3.2	18
144	Succession, regression and loss: does evidence of saltwater exposure explain recent changes in the tree communities of North Carolina's Coastal Plain?. Annals of Botany, 2020, 125, 255-264.	2.9	17

#	Article	IF	CITATIONS
145	Excess Nitrate Export in Mountaintop Removal Coal Mining Watersheds. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 3867-3880.	3.0	17
146	Consistent declines in aquatic biodiversity across diverse domains of life in rivers impacted by surface coal mining. Ecological Applications, 2021, 31, e02389.	3.8	17
147	Biogeochemical responses of two forest streams to a 2-month calcium addition. Freshwater Biology, 2001, 46, 291-302.	2.4	16
148	Give and Take: A Watershed Acid Rain Mitigation Experiment Increases Baseflow Nitrogen Retention but Increases Stormflow Nitrogen Export. Environmental Science & Technology, 2018, 52, 13155-13165.	10.0	16
149	Restoring biodiversity and ecosystem function: will an integrated approach improve results?. , 2009, , 167-177.		16
150	Buffering an Acidic Stream in New Hampshire with a Silicate Mineral. Restoration Ecology, 2004, 12, 419-428.	2.9	15
151	Hypoxia dynamics and spatial distribution in a low gradient river. Limnology and Oceanography, 2021, 66, 2251-2265.	3.1	15
152	The Duke Forest FACE Experiment: CO2 Enrichment of a Loblolly Pine Forest. , 2006, , 197-212.		15
153	Salinity thresholds for understory plants in coastal wetlands. Plant Ecology, 2022, 223, 323-337.	1.6	15
154	Hydroâ€Climatological Influences on Longâ€⊺erm Dissolved Organic Carbon in a Mountain Stream of the Southeastern United States. Journal of Environmental Quality, 2016, 45, 1286-1295.	2.0	14
155	A seasonally dynamic model of light at the stream surface. Freshwater Science, 2021, 40, 286-301.	1.8	14
156	A generalized optimization model of microbially driven aquatic biogeochemistry based on thermodynamic, kinetic, and stoichiometric ecological theory. Ecological Modelling, 2014, 294, 1-18.	2.5	12
157	Can algal uptake stop NO3â^' pollution?. Nature, 2011, 477, E3-E3.	27.8	10
158	Strontium Isotope Ratios in Fish Otoliths as Biogenic Tracers of Coal Combustion Residual Inputs to Freshwater Ecosystems. Environmental Science and Technology Letters, 2018, 5, 718-723.	8.7	10
159	Soil carbon losses due to higher pH offset vegetation gains due to calcium enrichment in an acid mitigation experiment. Ecology, 2018, 99, 2363-2373.	3.2	10
160	Copper and Gold Nanoparticles Increase Nutrient Excretion Rates of Primary Consumers. Environmental Science & Technology, 2020, 54, 10170-10180.	10.0	10
161	Wetland Ecosystems. , 2020, , 249-291.		10
162	Watershed studies at the Hubbard Brook Experimental Forest: Building on a long legacy of research with new approaches and sources of data. Hydrological Processes, 2021, 35, .	2.6	10

#	Article	IF	CITATIONS
163	Evaluating River Restoration1., 2011, 21, 1925-1925.		9
164	Urban stream denitrifier communities are linked to lower functional resistance to multiple stressors associated with urbanization. Hydrobiologia, 2014, 726, 13-23.	2.0	8
165	Mercury and selenium loading in mountaintop mining impacted alkaline streams and riparian food webs. Biogeochemistry, 2020, 150, 109-122.	3.5	8
166	The Atmosphere. , 2020, , 51-97.		8
167	A century of change: Reconstructing the biogeochemical history of Hubbard Brook. Hydrological Processes, 2021, 35, e14256.	2.6	8
168	Saltwater intrusion in context: soil factors regulate impacts of salinity on soil carbon cycling. Biogeochemistry, 2022, 157, 215-226.	3.5	8
169	Macroinvertebrate community responses to a dewatering disturbance gradient in a restored stream. Hydrology and Earth System Sciences, 2011, 15, 1771-1783.	4.9	7
170	Constraint-based simulation of multiple interactive elemental cycles in biogeochemical systems. Ecological Informatics, 2019, 50, 102-121.	5.2	7
171	Subsidized or stressed? Shifts in freshwater benthic microbial metagenomics along a gradient of alkaline coal mine drainage. Limnology and Oceanography, 2020, 65, S277.	3.1	7
172	Mountaintop mining legacies constrain ecological, hydrological and biogeochemical recovery trajectories. Environmental Research Letters, 2021, 16, 075004.	5.2	7
173	Microchemical analysis of selenium in otoliths of two West Virginia fishes captured near mountaintop removal coal mining operations. Environmental Toxicology and Chemistry, 2015, 34, 1039-1044.	4.3	6
174	Stoichiometry and daily rhythms: experimental evidence shows nutrient limitation decouples N uptake from photosynthesis. Ecology, 2019, 100, e02822.	3.2	6
175	Characterizing and classifying urban watersheds with compositional and structural attributes. Hydrological Processes, 2021, 35, e14339.	2.6	6
176	Alkaline mine drainage drives stream sediment microbial community structure and function. Science of the Total Environment, 2022, 805, 150189.	8.0	6
177	A Global View on Future Major Water Engineering Projects. Water Resources Development and Management, 2016, , 47-64.	0.4	6
178	Bridging Engineering, Ecological, and Geomorphic Science to Enhance Riverine Restoration: Local and National Efforts. , 2004, , 29.		5
179	From a line in the sand to a landscape of decisions: a hierarchical diversity decision framework for estimating and communicating biodiversity loss along anthropogenic gradients. Methods in Ecology and Evolution, 2015, 6, 795-805.	5.2	4
180	Phytotoxicity of soluble graphitic nanofibers to model plant species. Environmental Toxicology and Chemistry, 2016, 35, 2941-2947.	4.3	4

0

#	Article	IF	CITATIONS
181	The Carbon Cycle of Terrestrial Ecosystems. , 2020, , 141-182.		4
182	Inland Waters. , 2020, , 293-360.		4
183	Lethal impacts of selenium counterbalance the potential reduction in mercury bioaccumulation for freshwater organisms. Environmental Pollution, 2021, 287, 117293.	7.5	4
184	Are nitrogen and carbon cycle processes impacted by common stream antibiotics? A comparative assessment of single vs. mixture exposures. PLoS ONE, 2022, 17, e0261714.	2.5	4
185	Development and Application of a Simulation Environment (NEO) for Integrating Empirical and Computational Investigations of System-Level Complexity. , 2012, , .		3
186	Inland Waters. , 2013, , 275-340.		3
187	The Lithosphere. , 2020, , 99-139.		2
188	Biogeochemical Cycling on Land. , 2020, , 183-248.		2
189	The Global Cycles of Nitrogen, Phosphorus and Potassium. , 2020, , 483-508.		2
190	Chemistry of surface water, precipitation, throughfall, leaves, sediment, soil, and air near a gold mining region in <scp>P</scp> eru. Ecology, 2022, 103, e3666.	3.2	2
191	Coastal freshwater wetlands squeezed between migrating salt marshes and working lands. Science Advances, 2022, 8, .	10.3	2
192	The Global Carbon and Oxygen Cycles. , 2020, , 453-481.		1
193	Ecosystem modification and network position impact insect-mediated contaminant fluxes from a mountaintop mining-impacted river network. Environmental Pollution, 2021, 291, 118257.	7.5	1
194	Ecological Science and Sustainability for the 21st Century. Frontiers in Ecology and the Environment, 2005, 3, 4.	4.0	1
195	Lessons from kinetic releases of ammonium in streams of the Hubbard Brook Experimental Forest. Verhandlungen Der Internationalen Vereinigung Fur Theoretische Und Angewandte Limnologie International Association of Theoretical and Applied Limnology, 2002, 28, 429-433.	0.1	0

196 The Oceans. , 2020, , 361-429.