
Sophie Vriz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9579785/publications.pdf Version: 2024-02-01

SODHIE VDIZ

#	Article	IF	CITATIONS
1	Hypocrates is a genetically encoded fluorescent biosensor for (pseudo)hypohalous acids and their derivatives. Nature Communications, 2022, 13, 171.	12.8	9
2	An early Shh–H2O2 reciprocal regulatory interaction controls the regenerative program during zebrafish fin regeneration. Journal of Cell Science, 2022, 135, .	2.0	9
3	Fgf8 dynamics and critical slowing down may account for the temperature independence of somitogenesis. Communications Biology, 2022, 5, 113.	4.4	5
4	Reciprocal Regulation of Shh Trafficking and H2O2 Levels via a Noncanonical BOC-Rac1 Pathway. Antioxidants, 2022, 11, 718.	5.1	4
5	Orthogonal fluorescent chemogenetic reporters for multicolor imaging. Nature Chemical Biology, 2021, 17, 30-38.	8.0	43
6	Evaluation of the compounds commonly known as superoxide dismutase and catalase mimics in cellular models. Journal of Inorganic Biochemistry, 2021, 219, 111431.	3.5	22
7	A di-Copper Peptidyl Complex Mimics the Activity of Catalase, a Key Antioxidant Metalloenzyme. Inorganic Chemistry, 2021, 60, 9309-9319.	4.0	7
8	Versatile On-Demand Fluorescent Labeling of Fusion Proteins Using Fluorescence-Activating and Absorption-Shifting Tag (FAST). Methods in Molecular Biology, 2021, 2350, 253-265.	0.9	5
9	Redox-regulated brain development. , 2020, , 565-582.		2
10	A Farâ€Red Emitting Fluorescent Chemogenetic Reporter for In Vivo Molecular Imaging. Angewandte Chemie, 2020, 132, 18073-18079.	2.0	14
11	H2O2 and Engrailed 2 paracrine activity synergize to shape the zebrafish optic tectum. Communications Biology, 2020, 3, 536.	4.4	18
12	A Farâ€Red Emitting Fluorescent Chemogenetic Reporter for In Vivo Molecular Imaging. Angewandte Chemie - International Edition, 2020, 59, 17917-17923.	13.8	29
13	Ultrasensitive Genetically Encoded Indicator for Hydrogen Peroxide Identifies Roles for the Oxidant in Cell Migration and Mitochondrial Function. Cell Metabolism, 2020, 31, 642-653.e6.	16.2	202
14	An evolutionarily-conserved Wnt3/β-catenin/Sp5 feedback loop restricts head organizer activity in Hydra. Nature Communications, 2019, 10, 312.	12.8	84
15	Redox Signaling via Lipid Peroxidation Regulates Retinal Progenitor Cell Differentiation. Developmental Cell, 2019, 50, 73-89.e6.	7.0	35
16	Optical control of protein activity and gene expression by photoactivation of caged cyclofen. Methods in Enzymology, 2019, 624, 1-23.	1.0	3
17	Control of Protein Activity and Gene Expression by Cyclofenâ€OH Uncaging. ChemBioChem, 2018, 19, 1232-1238.	2.6	12
18	Redox signalling in development and regeneration. Seminars in Cell and Developmental Biology, 2018, 80. 1-2.	5.0	4

SOPHIE VRIZ

#	Article	IF	CITATIONS
19	Nerves, H2O2 and Shh: Three players in the game of regeneration. Seminars in Cell and Developmental Biology, 2018, 80, 65-73.	5.0	19
20	Hydrogen Peroxide and Redox Regulation of Developments. Antioxidants, 2018, 7, 159.	5.1	59
21	Fluorogenic Probing of Membrane Protein Trafficking. Bioconjugate Chemistry, 2018, 29, 1823-1828.	3.6	24
22	Opioids prevent regeneration in adult mammals through inhibition of ROS production. Scientific Reports, 2018, 8, 12170.	3.3	35
23	Homéoprotéines et plasticité cellulaireÂ/ Homeoproteins and cell plasticity. L'annuaire Du Collège De France, 2018, , 662-664.	0.0	0
24	Heritable expansion of the genetic code in mouse and zebrafish. Cell Research, 2017, 27, 294-297.	12.0	57
25	Optical Control of Tumor Induction in the Zebrafish. Scientific Reports, 2017, 7, 9195.	3.3	22
26	Nerves and hydrogen peroxide: how old enemies become new friends. Neural Regeneration Research, 2017, 12, 568.	3.0	6
27	Hydrogen peroxide (H2O2) controls axon pathfinding during zebrafish development. Developmental Biology, 2016, 414, 133-141.	2.0	77
28	Small fluorescence-activating and absorption-shifting tag for tunable protein imaging in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 497-502.	7.1	186
29	Nerves Control Redox Levels in Mature Tissues Through Schwann Cells and Hedgehog Signaling. Antioxidants and Redox Signaling, 2016, 24, 299-311.	5.4	48
30	Homéoprotéines et plasticité cellulaire. L'annuaire Du Collège De France, 2016, , 918-919.	0.0	0
31	Control of brain patterning by Engrailed paracrine transfer: a new function of the Pbx interaction domain. Development (Cambridge), 2015, 142, 1840-1849.	2.5	15
32	Photoswitching Kinetics and Phaseâ€Sensitive Detection Add Discriminative Dimensions for Selective Fluorescence Imaging. Angewandte Chemie - International Edition, 2015, 54, 2633-2637.	13.8	36
33	Adenosine enhances progenitor cell recruitment and nerve growth via its A2B receptor during adult fin regeneration. Purinergic Signalling, 2014, 10, 595-602.	2.2	11
34	Cell Death. Current Topics in Developmental Biology, 2014, 108, 121-151.	2.2	86
35	How to control proteins with light in living systems. Nature Chemical Biology, 2014, 10, 533-541.	8.0	216
36	Optical control and study of biological processes at the single-cell level in a live organism. Reports on Progress in Physics, 2013, 76, 072601.	20.1	14

SOPHIE VRIZ

#	Article	IF	CITATIONS
37	A Blue-Absorbing Photolabile Protecting Group for <i>in Vivo</i> Chromatically Orthogonal Photoactivation. ACS Chemical Biology, 2013, 8, 1528-1536.	3.4	96
38	Sustained production of ROS triggers compensatory proliferation and is required for regeneration to proceed. Scientific Reports, 2013, 3, 2084.	3.3	256
39	Spatiotemporal manipulation of retinoic acid activity in zebrafish hindbrain development via photo-isomerization. Development (Cambridge), 2012, 139, 3355-3362.	2.5	12
40	Developmental Role of Zebrafish Protease-Activated Receptor 1 (PAR1) in the Cardio-Vascular System. PLoS ONE, 2012, 7, e42131.	2.5	21
41	A method to assess the migration properties of cell-derived microparticles within a living tissue. Biochimica Et Biophysica Acta - General Subjects, 2011, 1810, 863-866.	2.4	5
42	C5â€DNA Methyltransferase Inhibitors: From Screening to Effects on Zebrafish Embryo Development. ChemBioChem, 2011, 12, 1337-1345.	2.6	69
43	Implication of type 3 deiodinase induction in zebrafish fin regeneration. General and Comparative Endocrinology, 2010, 168, 88-94.	1.8	27
44	Photocontrol of Protein Activity in Cultured Cells and Zebrafish with One―and Twoâ€Photon Illumination. ChemBioChem, 2010, 11, 653-663.	2.6	72
45	Photoactivation of the CreER ^{T2} Recombinase for Conditional Site-Specific Recombination with High Spatiotemporal Resolution. Zebrafish, 2010, 7, 199-204.	1.1	61
46	Single Cell Physiology. Springer Series in Chemical Physics, 2010, , 305-316.	0.2	2
47	Photo-Control of Protein Activity in a Single Cell of a Live Organisim. Biophysical Journal, 2010, 98, 612a.	0.5	0
48	Translocator protein (18 kDa) is involved in primitive erythropoiesis in zebrafish. FASEB Journal, 2009, 23, 4181-4192.	0.5	28
49	Fgf and Sdf-1 Pathways Interact during Zebrafish Fin Regeneration. PLoS ONE, 2009, 4, e5824.	2.5	38
50	A Caged Retinoic Acid for One―and Twoâ€Photon Excitation in Zebrafish Embryos. Angewandte Chemie - International Edition, 2008, 47, 3744-3746.	13.8	83
51	Mechano-sensory organ regeneration in adults: The zebrafish lateral line as a model. Molecular and Cellular Neurosciences, 2006, 33, 180-187.	2.2	53
52	The chemokine SDF-1 regulates blastema formation during zebrafish fin regeneration. Development Genes and Evolution, 2006, 216, 635-639.	0.9	34
53	High-efficiency gene transfer into adult fish: A new tool to study fin regeneration. Genesis, 2002, 32, 27-31.	1.6	61
54	Zebrafish Hsp40 and Hsc70 genes are both induced during caudal fin regeneration. Mechanisms of Development, 2000, 99, 183-186.	1.7	21

SOPHIE VRIZ

#	Article	IF	CITATIONS
55	Hotfoot Mouse Mutations Affect the δ2 Glutamate Receptor Gene and Are Allelic to Lurcher. Genomics, 1998, 50, 9-13.	2.9	87
56	Construction of a high-resolution genetic map encompassing the hotfoot locus. Mammalian Genome, 1997, 8, 903-906.	2.2	4
57	Molecular characterization of a heat shock cognate cDNA of zebrafish,hsc70, and developmental expression of the corresponding transcripts. Genesis, 1997, 21, 223-233.	2.1	64
58	Zygotic expression of the zebrafish Sox-19, an HMG box-containing gene, suggests an involvement in central nervous system development. Molecular Brain Research, 1996, 40, 221-228.	2.3	30
59	The zebrafish Zf-Sox 19 protein: a novel member of the Sox family which reveals highly conserved motifs outside of the DNA-binding domain. Gene, 1995, 153, 275-276.	2.2	39
60	Isolation and developmental expression of an oogenesis-specific Xenopus cDNA clone. Roux's Archives of Developmental Biology, 1992, 201, 113-119.	1.2	0
61	Posttranscriptional regulation of c-myc RNA during early development ofXenopus laevis. FEBS Letters, 1991, 291, 177-180.	2.8	8
62	Analysis of 3′-untranslated regions of seven c-myc genes reveals conserved elements prevalent in post-transcriptionally regulated genes. FEBS Letters, 1989, 251, 201-206.	2.8	19
63	Proto-oncogenes and embryonic development. Biochimie, 1988, 70, 895-899.	2.6	3
64	NADPH-Oxidase Derived Hydrogen Peroxide and Irs2b Facilitate Re-oxygenation-Induced Catch-Up Growth in Zebrafish Embryo. Frontiers in Endocrinology, 0, 13, .	3.5	2