Muhammad Khusairy Bin Bakri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9579768/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A review on the extraction of cellulose and nanocellulose as a filler through solid waste management. Journal of Thermoplastic Composite Materials, 2023, 36, 1306-1327.	4.2	9
2	A review on poly lactic acid (PLA) as a biodegradable polymer. Polymer Bulletin, 2023, 80, 1179-1213.	3.3	135
3	Optimization and characterization of acrylonitrile/MAPE/nano-clay bamboo nanocomposites by response surface methodology. Polymer Bulletin, 2022, 79, 3031-3059.	3.3	9
4	Applications of cellulose materials and their composites. , 2022, , 267-284.		1
5	Recycled plastic and textile waste biocomposites. , 2022, , 97-118.		0
6	Recycled industrial plastics' fine waste incorporated into biocomposites. , 2022, , 213-228.		0
7	Cellulose reinforcement in thermoplastic composites. , 2022, , 103-126.		1
8	Utilization of nanocellulose as reinforcement in biodegradable biomaterials. , 2022, , 243-266.		0
9	Extraction, types, and classification of cellulose. , 2022, , 19-40.		0
10	Cellulose reinforcement in thermoset composites. , 2022, , 127-142.		3
11	Micro and nano effects of recycled plastic waste to reinforce and enhance in biocomposites. , 2022, , 195-211.		0
12	Development of pulp and paper waste-recycled plastic biocomposites. , 2022, , 51-79.		0
13	Introduction to recycled plastic biocomposites. , 2022, , 1-27.		2
14	Recycled rubber waste plastic and its composites. , 2022, , 147-163.		2
15	Recycled polymer and plastic waste and its biocomposites. , 2022, , 81-96.		2
16	Marine-based reinforcing materials for biocomposites. , 2022, , 229-245.		0
17	Cellulose-reinforced rubber composites. , 2022, , 175-188.		0
18	Cellulose reinforcement in bioplastic composites. , 2022, , 143-158.		0

Cellulose reinforcement in bioplastic composites. , 2022, , 143-158. 18

#	Article	IF	CITATIONS
19	Sources of cellulose. , 2022, , 1-18.		4
20	Cellulose interunit linkages and model compounds. , 2022, , 41-52.		0
21	Food residue to reinforce recycled plastic biocomposites. , 2022, , 29-49.		Ο
22	Cellulose-based composite carbon nanofibers. , 2022, , 159-174.		0
23	Effect of Chemical Treatment on Silicon Manganese: Its Morphological, Elemental and Spectral Properties and Its Usage in Concrete. Silicon, 2022, 14, 8081-8096.	3.3	2
24	Impact of recycled plastic biocomposites on the economy and socioenvironment. , 2022, , 247-259.		0
25	Resources and energy recovery with recycled plastic biocomposites. , 2022, , 261-280.		Ο
26	Education and awareness of waste and recycled plastic biocomposites. , 2022, , 281-297.		0
27	Glass Waste as Fine Aggregate Filler Replacement in Concrete Addition of Superplasticizer. Engineering Materials, 2022, , 45-61.	0.6	Ο
28	Uncrushed Cockleshell as Coarse Aggregate Filler Replacement in Concrete. Engineering Materials, 2022, , 63-80.	0.6	0
29	Characterization and optimization of organoclay- poly(melamine-co-formaldehyde)-methylated solution impregnated pulai (Alstonia spp.) wood using response surface methodology. BioResources, 2022, 17, 2780-2809.	1.0	Ο
30	Characterization and comparative study on chemically treated luffa fiber as reinforcement for polylactic acid bio-composites. BioResources, 2022, 17, 2576-2597.	1.0	3
31	Application of synthetic acyl glucopyranosides for white-rot and brown-rot fungal decay resistance in aspen and pine wood. BioResources, 2022, 17, 3025-3041.	1.0	5
32	Electrical properties in reinforced polymer composites. , 2021, , 131-140.		0
33	Applications of sustainable polymer composites in automobile and aerospace industry. , 2021, , 185-207.		52
34	Importance of sustainable polymers for modern society and development. , 2021, , 1-35.		2
35	Nano-reinforcement in sustainable polymer composites. , 2021, , 231-243.		0
36	Life cycle assessment of sustainable composites. , 2021, , 245-265.		0

#	Article	IF	CITATIONS
37	Recycling of sustainable polymers and composites. , 2021, , 267-282.		8
38	Use of sustainable polymers to make green composites. , 2021, , 109-129.		5
39	Characterization and optimization of mechanical properties of bamboo/nanoclay/polyvinyl alcohol/styrene nanocomposites using response surface methodology. Journal of Vinyl and Additive Technology, 2021, 27, 147-160.	3.4	8
40	Bamboo Cellulose Gel/MMT Polymer Nanocomposites for High Strength Materials. Engineering Materials, 2021, , 131-157.	0.6	1
41	Bamboo Nanocomposites Future Development and Applications. Engineering Materials, 2021, , 183-191.	0.6	1
42	Introduction of Various Types of Bamboo Species and Its Nanocomposites Preparation. Engineering Materials, 2021, , 1-19.	0.6	0
43	Acrylation and Acrylonitrile Grafting with MMT Bamboo Nanocomposite. Engineering Materials, 2021, , 39-61.	0.6	2
44	Impact of Poly (Ethylene-Alt-Maleic Anhydride) and Nanoclay on the Physicochemical, Mechanical, and Thermal Properties of Bamboo Nanocomposite. Engineering Materials, 2021, , 21-37.	0.6	1
45	Bamboo and Wood Fibers/MMT Hybrid Nanocomposites. Engineering Materials, 2021, , 107-130.	0.6	0
46	Polylactic Acid Activated Bamboo Carbon Nanocomposites. Engineering Materials, 2021, , 63-82.	0.6	0
47	Bamboo Nanocellulose Reinforced Polylactic Acid Nanocomposites. Engineering Materials, 2021, , 159-181.	0.6	0
48	Investigation onÂthe Brittle and Ductile Behavior of Bamboo Nano Fiber Reinforced Polypropylene Nanocomposites. Engineering Materials, 2021, , 83-105.	0.6	0
49	Educational and Awareness of Bamboo Nanocomposites Towards Sustainable Environment. Engineering Materials, 2021, , 193-205.	0.6	Ο
50	Characterization study of flax/strontium titanate/polypropylene composite for lowâ€k dielectric applications. Journal of Applied Polymer Science, 2021, 138, 50577.	2.6	3
51	Morphological and thermal properties of composites prepared with poly(lactic acid), poly(ethylene-alt-maleic anhydride), and biochar from microwave-pyrolyzed jatropha seeds. BioResources, 2021, 16, 3171-3185.	1.0	14
52	A Review Based on Low- and High-Stream Global Carbon Capture and Storage (CCS) Technology and Implementation Strategy. Journal of Applied Science & Process Engineering, 2021, 8, 722-737.	0.1	4
53	Small-size jatropha seed biochar extracted from microwave pyrolysis: Optimization of its biocomposites mechanical properties by mixture design. BioResources, 2021, 16, 4716-4730.	1.0	3
54	Analysis of char prepared by pyrolysis of dabai (Canarium odontophyllum) nutshells as a potential precursor of biocarbon used for wastewater treatment. BioResources, 2021, 16, 5036-5046.	1.0	3

Muhammad Khusairy Bin

#	Article	IF	CITATIONS
55	Interfacial polarization effects on dielectric properties in flax reinforced polypropylene/strontium titanate composites. Materials Chemistry and Physics, 2021, 265, 124489.	4.0	11
56	Characterization and impact of curing duration on the compressive strength of coconut shell coarse aggregate in concrete. BioResources, 2021, 16, 6057-6073.	1.0	5
57	STAGE-STORAGE AND FLOOD RISK ASSESSMENTS OF UPGRADED BATU KITANG SUBMERSIBLE WEIR. Xinan Jiaotong Daxue Xuebao/Journal of Southwest Jiaotong University, 2021, 56, 203-212.	0.2	0
58	Comparative study of Fourier transform infrared spectroscopy (FTIR) analysis of natural fibres treated with chemical, physical and biological methods. Polymer Bulletin, 2020, 77, 1605-1629.	3.3	26
59	The effect of palm oil fuel ash (POFA) and polyvinyl alcohol (PVA) on the physico-mechanical, thermal and morphological properties of hybrid bio-composites. Polymer Bulletin, 2020, 77, 3523-3535.	3.3	7
60	The curing times effect on the strength of ground granulated blast furnace slag (GGBFS) mortar. Construction and Building Materials, 2020, 260, 120622.	7.2	31
61	Effect of biomass ash mixture composite on sound absorption. Materials Today: Proceedings, 2020, 29, 223-227.	1.8	1
62	Impact of polyvinyl alcohol/acrylonitrile on bamboo nanocomposite and optimization of mechanical performance by response surface methodology. Construction and Building Materials, 2020, 258, 119693.	7.2	14
63	Comparative study of fly ash/sugarcane fiber reinforced polymer composites properties. BioResources, 2020, 15, 5514-5531.	1.0	11
64	Dielectric properties of natural Borneo woods: Keranji, Kayu Malam, and Kumpang. BioResources, 2020, 15, 7815-7827.	1.0	3
65	Synthesis and characterization of micro-nano carbon filler from Jatropha seeds. BioResources, 2020, 15, 3237-3251.	1.0	8
66	Tert-butyl catechol/alkaline-treated kenaf/jute polyethylene hybrid composites: impact on physico-mechanical, thermal and morphological properties. Polymer Bulletin, 2019, 76, 763-784.	3.3	19
67	Cellulose fiber-reinforced thermosetting composites: impact of cyanoethyl modification on mechanical, thermal and morphological properties. Polymer Bulletin, 2019, 76, 4295-4311.	3.3	15
68	Introduction of Various Types of Acacia Wood. Engineering Materials, 2019, , 1-21.	0.6	2
69	Infrared Spectral Functional Group and Thermal Properties of Acacia Wood Bio-composites. Engineering Materials, 2019, , 135-151.	0.6	1
70	Tensile, Flexural and Impact Strength of Acacia Wood Bio-composites. Engineering Materials, 2019, , 103-119.	0.6	0
71	Effect of Nano-enhancement on Acacia Wood Bio-composites. Engineering Materials, 2019, , 187-205.	0.6	0
72	Environmental Impact Analysis of Wood and Natural Fiber Bio-Composites. Engineering Materials, 2019, , 153-170.	0.6	0

5

Muhammad Khusairy Bin

#	Article	IF	CITATIONS
73	Study of Surface Behavior of Acacia Wood Bio-composites by Morphological Analysis. Engineering Materials, 2019, , 121-134.	0.6	0
74	Potential of Borneo Acacia wood in fully biodegradable bio-composites' commercial production and application. Polymer Bulletin, 2018, 75, 5333-5354.	3.3	18
75	Short Review: Potential Production of Acacia Wood and its Biocomposites. Materials Science Forum, 2018, 917, 37-41.	0.3	4
76	Lignocellulosic Fibres Reinforced Polymer Composites for Acoustical Applications. Springer Series on Polymer and Composite Materials, 2018, , 415-444.	0.7	2
77	Comparative analysis on dielectric properties of polymer composites reinforced with synthetic and natural fibers. Journal of Vinyl and Additive Technology, 2018, 24, E201.	3.4	12
78	Study of dielectric properties of luffa–polylactide quadratic splint composites: The effect of cyclic absorption and desorption of water. Journal of Vinyl and Additive Technology, 2018, 24, 388-394.	3.4	8
79	Biomedical and packaging application of silica and various clay dispersed nanocomposites. , 2018, , 109-136.		1
80	Durability and sustainability of the silica and clay and its nanocomposites. , 2018, , 137-157.		2
81	Improvement of epoxy nanocomposites on physical, morphology, and mechanical properties as well as fracture behavior with the addition of mesoporous silica/nano-silica. , 2018, , 259-280.		1
82	Comparative Study of Compressive Strength of Epoxy Based Bio-Composites. Key Engineering Materials, 2018, 775, 68-73.	0.4	2
83	Biocomposite Materials and Its Applications in Acoustical Comfort and Noise Control. Green Energy and Technology, 2017, , 247-259.	0.6	5
84	Processing and Characterization of Banana Fiber/Epoxy Composites: Effect of Alkaline Treatment. Materials Today: Proceedings, 2017, 4, 2871-2878.	1.8	40
85	Comparative Study of Sound Absorption Coefficients of Coir/Kenaf/Sugarcane Bagasse Fiber Reinforced Epoxy Composites. Key Engineering Materials, 2017, 730, 48-53.	0.4	6
86	Application of Analytic Hierarchy Process (AHP) in the analysis of the fuel efficiency in the automobile industry with the utilization of Natural Fiber Polymer Composites (NFPC). IOP Conference Series: Materials Science and Engineering, 2017, 191, 012004.	0.6	5
87	An Experimental and Simulation Studies on Sound Absorption Coefficients of Banana Fibers and their Reinforced Composites. Nano Hybrids and Composites, 2016, 12, 9-20.	0.8	17
88	Acoustical, thermal, and morphological properties of zein reinforced oil palm empty fruit bunch fiber bioâ€composites. Journal of Applied Polymer Science, 2016, 133, .	2.6	18
89	Analysis of natural fiber polymer composites: Effects of alkaline treatment on sound absorption. Journal of Reinforced Plastics and Composites, 2016, 35, 703-711.	3.1	31
90	INVESTIGATION ON DIELECTRIC AND SOUND ABSORPTION PROPERTIES OF BANANA FIBERS REINFORCED EPOXY COMPOSITES. Jurnal Teknologi (Sciences and Engineering), 2016, 78, .	0.4	10

Muhammad Khusairy Bin

1

#	Article	IF	CITATIONS
91	Effect of Developing Analytic/Task Specific Rubric for an Enhanced Student Learning in Manufacturing Subjects. , 2016, , .		0
92	An investigation of sound absorption coefficient on sisal fiber poly lactic acid bio omposites. Journal of Applied Polymer Science, 2015, 132, .	2.6	18
93	Study of Sound Absorption Coefficients and Characterization of Rice Straw Stem Fibers Reinforced Polypropylene Composites. BioResources, 2015, 10, .	1.0	33
94	Dielectric Properties of Lignocellulosic Fibers Reinforced Polymer Composites: Effect of Fiber Loading and Alkaline Treatment. Materials Today: Proceedings, 2015, 2, 2757-2766.	1.8	30
95	Reinforced Oil Palm Fiber Epoxy Composites: An Investigation on Chemical Treatment of Fibers on Acoustical, Morphological, Mechanical and Spectral Properties. Materials Today: Proceedings, 2015, 2, 2747-2756.	1.8	15
96	Processing and Characterization of Epoxy/Luffa Composites: Investigation on Chemical Treatment of Fibers on Mechanical and Acoustical Properties. BioResources, 2014, 9, .	1.0	22
97	Investigation of Fiber Surface Treatment on Mechanical, Acoustical and Thermal Properties of Betelnut Fiber Polyester Composites. Procedia Engineering, 2014, 97, 545-554.	1.2	75
98	Comparative Study of Dielectric Properties of Hybrid Natural Fiber Composites. Procedia Engineering, 2014, 97, 536-544.	1.2	105
99	Preliminary Study on the Acoustical, Dielectric and Mechanical Properties of Sugarcane Bagasse Reinforced Unsaturated Polyester Composites. Materials Science Forum, 0, 890, 12-15.	0.3	2
100	Dielectric Properties of Pineapple Leaf Fiber Reinforced Epoxy Based Composites. Key Engineering Materials, 0, 730, 42-47.	0.4	6
101	Heat Treated Luffa - PLA Composites: Effect of Cyclic Moisture Absorption and Desorption on the Mechanical Properties. Materials Science Forum, 0, 917, 42-46.	0.3	1
102	Potential in the Development of Borneo Acacia Wood Reinforced Polyhydroxyalkanoates Bio-Composites. Key Engineering Materials, 0, 779, 19-24.	0.4	3
103	Mechanical Properties of Chicken Feather Reinforced Unsaturated Polyester Composites. Key Engineering Materials, 0, 775, 3-6.	0.4	4
104	Short Review on Conductive Polymer Composites as Functional Materials. Key Engineering Materials, 0, 796, 17-21.	0.4	4
105	Performance of Coconut Biodiesel Fueled Diesel Engine with Exhaust Gas Emission Analysis. Materials Science Forum, 0, 1030, 149-158.	0.3	0
106	Towards the Development of Value-Added Nanocomposites. , 0, , .		0
107	Current and Past: Nanocellulose and Nanocomposites and Its Future Applications. , 0, , .		0

108 Environmental Sustainability of Biopolymers. , 0, , .

#	Article	IF	CITATIONS
109	Elimination of Heavy Metal Ion using Nanocellulose Based Membranes. , 0, , .		1
110	Bamboo and Its Bio-composites. , 0, , .		1

Bamboo and Its Bio-composites. , 0, , . 110