Wenjing Song

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9579759/publications.pdf

Version: 2024-02-01

59	3,684 citations	33	128289
papers	citations	h-index	g-index
63	63	63	4460
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Fenton Degradation of Organic Compounds Promoted by Dyes under Visible Irradiation. Environmental Science & Environmental Scie	10.0	241
2	Solar water splitting in a molecular photoelectrochemical cell. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20008-20013.	7.1	203
3	Nonmetal P-doped hematite photoanode with enhanced electron mobility and high water oxidation activity. Energy and Environmental Science, 2015, 8, 1231-1236.	30.8	202
4	Photostability of Phosphonate-Derivatized, Ru ^{II} Polypyridyl Complexes on Metal Oxide Surfaces. ACS Applied Materials & Surfaces, 2012, 4, 1462-1469.	8.0	157
5	Structure–Property Relationships in Phosphonate-Derivatized, Ru ^{II} Polypyridyl Dyes on Metal Oxide Surfaces in an Aqueous Environment. Journal of Physical Chemistry C, 2012, 116, 14837-14847.	3.1	156
6	Rate-Limiting O–O Bond Formation Pathways for Water Oxidation on Hematite Photoanode. Journal of the American Chemical Society, 2018, 140, 3264-3269.	13.7	156
7	Photodegradation of Dye Pollutants Catalyzed by Porous K3PW12O40 under Visible Irradiation. Environmental Science & Environmen	10.0	155
8	Fenton Degradation of Organic Pollutants in the Presence of Low-Molecular-Weight Organic Acids: Cooperative Effect of Quinone and Visible Light. Environmental Science & Dechnology, 2006, 40, 618-624.	10.0	133
9	Activation of Water in Titanium Dioxide Photocatalysis by Formation of Surface Hydrogen Bonds: An In Situ IR Spectroscopy Study. Angewandte Chemie - International Edition, 2015, 54, 5905-5909.	13.8	129
10	Making solar fuels by artificial photosynthesis. Pure and Applied Chemistry, 2011, 83, 749-768.	1.9	123
11	Selfâ€Assembled Bilayer Films of Ruthenium(II)/Polypyridyl Complexes through Layerâ€byâ€Layer Deposition on Nanostructured Metal Oxides. Angewandte Chemie - International Edition, 2012, 51, 12782-12785.	13.8	118
12	Photoinduced Electron Transfer in a Chromophore–Catalyst Assembly Anchored to TiO ₂ . Journal of the American Chemical Society, 2012, 134, 19189-19198.	13.7	116
13	\hat{l} ±-Fe2O3 as a versatile and efficient oxygen atom transfer catalyst in combination with H2O as the oxygen source. Nature Catalysis, 2021, 4, 684-691.	34.4	112
14	Catalytic activity of iron species in layered clays for photodegradation of organic dyes under visible irradiation. Applied Catalysis B: Environmental, 2008, 77, 355-363.	20.2	108
15	Decomposition of Hydrogen Peroxide Driven by Photochemical Cycling of Iron Species in Clay. Environmental Science & Environmental Science & Environmen	10.0	101
16	Photoinduced Stepwise Oxidative Activation of a Chromophore–Catalyst Assembly on TiO ₂ . Journal of Physical Chemistry Letters, 2011, 2, 1808-1813.	4.6	93
17	Visible Light Driven Benzyl Alcohol Dehydrogenation in a Dye-Sensitized Photoelectrosynthesis Cell. Journal of the American Chemical Society, 2014, 136, 9773-9779.	13.7	80
18	Copperâ€Based Coordination Polymer Nanostructure for Visible Light Photocatalysis. Advanced Materials, 2016, 28, 9776-9781.	21.0	80

#	Article	IF	CITATIONS
19	Nickel-Coordinated Carbon Nitride as a Metallaphotoredox Platform for the Cross-Coupling of Aryl Halides with Alcohols. ACS Catalysis, 2020, 10, 15178-15185.	11.2	72
20	Interfacial Electron Transfer Dynamics Following Laser Flash Photolysis of [Ru(bpy) ₂ ((4,4′â€PO ₃ H ₂) ₂ bpy)] ²⁺ in TiO ₂ Nanoparticle Films in Aqueous Environments. ChemSusChem, 2011, 4, 216-227.	6.8	71
21	Role of elemental carbon in the photochemical aging of soot. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 7717-7722.	7.1	70
22	Accumulation of Multiple Oxidative Equivalents at a Single Site by Cross-Surface Electron Transfer on TiO ₂ . Journal of the American Chemical Society, 2013, 135, 11587-11594.	13.7	68
23	Rapid photocatalytic debromination on TiO 2 with in-situ formed copper co-catalyst: Enhanced adsorption and visible light activity. Applied Catalysis B: Environmental, 2016, 194, 150-156.	20.2	67
24	A Sensitized Nb ₂ O ₅ Photoanode for Hydrogen Production in a Dye-Sensitized Photoelectrosynthesis Cell. Chemistry of Materials, 2013, 25, 122-131.	6.7	66
25	Photoreaction of aromatic compounds at $\hat{1}\pm$ -FeOOH/H2O interface in the presence of H2O2: evidence for organic-goethite surface complex formation. Water Research, 2005, 39, 119-128.	11.3	63
26	Photochemical Oscillation of Fe(II)/Fe(III) Ratio Induced by Periodic Flux of Dissolved Organic Matter. Environmental Science & Environmental Science	10.0	58
27	Interfacial Electron Transfer Dynamics for [Ru(bpy) ₂ b>2bpy)] ²⁺ Sensitized TiO ₂ in a Dye-Sensitized Photoelectrosynthesis Cell: Factors Influencing Efficiency and Dynamics, Journal of Physical Chemistry C. 2011. 115, 7081-7091.	3.1	56
28	Hydrogen-Bond Bridged Water Oxidation on {001} Surfaces of Anatase TiO ₂ . Journal of Physical Chemistry C, 2017, 121, 2251-2257.	3.1	50
29	An efficient approach for the photodegradation of organic pollutants by immobilized iron ions at neutral pHsElectronic supplementary information (ESI) available: experimental details and XPS spectra of the Fe 2p3/2 region for the FellI-resin catalyst before and after degradation of MG. See http://www.rsc.org/suppdata/cc/b3/b304309f/. Chemical Communications, 2003, 1582.	4.1	49
30	Novel Electrochemical Pretreatment for Preferential Removal of Nonylphenol in Industrial Wastewater: Biodegradability Improvement and Toxicity Reduction. Environmental Science & Emp; Technology, 2020, 54, 1258-1266.	10.0	49
31	Interfacial Dynamics and Solar Fuel Formation in Dyeâ€Sensitized Photoelectrosynthesis Cells. ChemPhysChem, 2012, 13, 2882-2890.	2.1	41
32	Anchored Oxygen-Donor Coordination to Iron for Photodegradation of Organic Pollutants. Environmental Science & Environmental S	10.0	39
33	Inverse Kinetic Solvent Isotope Effect in TiO ₂ Photocatalytic Dehalogenation of Nonâ€adsorbable Aromatic Halides: A Protonâ€Induced Pathway. Angewandte Chemie - International Edition, 2015, 54, 2052-2056.	13.8	37
34	Self-Assembled Bilayers on Indium–Tin Oxide (SAB-ITO) Electrodes: A Design for Chromophore–Catalyst Photoanodes. Inorganic Chemistry, 2012, 51, 8637-8639.	4.0	33
35	Catalytic hydrodehalogenation over supported gold: Electron transfer versus hydride transfer. Applied Catalysis B: Environmental, 2018, 231, 262-268.	20.2	31
36	Photocatalytic Hydrodehalogenation for the Removal of Halogenated Aromatic Contaminants. ChemCatChem, 2019, 11, 258-268.	3.7	28

#	Article	IF	Citations
37	Visualization of cation diffusion at the TiO2 interface in dye sensitized photoelectrosynthesis cells (DSPEC). Energy and Environmental Science, 2013, 6, 1240.	30.8	25
38	Doping-Promoted Solar Water Oxidation on Hematite Photoanodes. Molecules, 2016, 21, 868.	3.8	21
39	Intermediate accumulation and toxicity reduction during the selective photoelectrochemical process of atrazine in complex water bodies. Water Research, 2021, 205, 117663.	11.3	21
40	Ligand directed debromination of tetrabromodiphenyl ether mediated by nickel under visible irradiation. Environmental Science: Nano, 2019, 6, 1585-1593.	4.3	18
41	Oxidation of a Water-Soluble Phosphine and Some Spectroscopic Probes with Nitric Oxide and Nitrous Acid in Aqueous Solutions. Inorganic Chemistry, 2009, 48, 6979-6985.	4.0	17
42	Visible-light-driven semihydrogenation of alkynes via proton reduction over carbon nitride supported nickel. Applied Catalysis B: Environmental, 2022, 304, 121004.	20.2	17
43	Electron-Transfer Reactions of Nitrosyl and Superoxo Metal Complexes. Inorganic Chemistry, 2008, 47, 8405-8411.	4.0	13
44	Preparation, Crystal Structure, and Unusually Facile Redox Chemistry of a Macrocyclic Nitrosylrhodium Complex. Inorganic Chemistry, 2010, 49, 7182-7187.	4.0	13
45	Facial boron incorporation in hematite photoanode for enhanced photoelectrochemical water oxidation. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 355, 290-297.	3.9	12
46	Photochemical production or depletion of hydrogen peroxide controlled by different electron transfer pathways in methyl viologen intercalated clays. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 183, 31-34.	3.9	10
47	Localized TillI mediated dissociative electron transfer for carbon halogen bond activation on TiO2. Applied Catalysis B: Environmental, 2017, 219, 322-328.	20.2	10
48	Pathways Following Electron Injection: Medium Effects and Cross-Surface Electron Transfer in a Ruthenium-Based, Chromophore–Catalyst Assembly on TiO ₂ . Journal of Physical Chemistry C, 2018, 122, 13017-13026.	3.1	10
49	Photo(electro)catalytic activity enhancement of PhC ₂ Cu by Fe doping induced energy band modulation and luminescence chromism switching. Catalysis Science and Technology, 2021, 11, 2379-2385.	4.1	10
50	Oxidative Homolysis of a Nitrosylchromium Complex. Chemistry - A European Journal, 2008, 14, 4906-4912.	3.3	7
51	Light-driven activation of carbon-halogen bonds by readily available amines for photocatalytic hydrodehalogenation. Chinese Journal of Catalysis, 2020, 41, 1474-1479.	14.0	7
52	Fast Ligand Substitution at a Chromium(III) Hydroperoxo Complex. Inorganic Chemistry, 2010, 49, 150-156.	4.0	6
53	Visible Lightâ€Induced Release of Nitrogen Monoxide from a Nitrosylrhodium Complex. Chemistry - A European Journal, 2011, 17, 4513-4517.	3.3	6
54	Generation of a Hydroperoxidochromium Complex from Nitratochromium(III) Ions and Hydrogen Peroxide. European Journal of Inorganic Chemistry, 2008, 2008, 4687-4689.	2.0	5

#	Article	IF	CITATIONS
55	Emergent Photostability Synchronization in Coassembled Array Members for the Steady Multiple Discrimination of Explosives. Advanced Science, 2022, 9, e2102739.	11.2	4
56	Interfacial proton-coupled electron transfer in metal oxide semiconductor photocatalysis. Research on Chemical Intermediates, 2017, 43, 4997-5009.	2.7	2
57	Zeolite NaY-mediated oxidation of dyes with H2O2: unique heterogeneous non-transition metal center cleavage of H2O2 under visible light irradiation. Science in China Series B: Chemistry, 2007, 50, 770-775.	0.8	1
58	Frontispiece: Inverse Kinetic Solvent Isotope Effect in TiO2Photocatalytic Dehalogenation of Non-adsorbable Aromatic Halides: A Proton-Induced Pathway. Angewandte Chemie - International Edition, 2015, 54, n/a-n/a.	13.8	0
59	Frontispiz: Inverse Kinetic Solvent Isotope Effect in TiO2Photocatalytic Dehalogenation of Non-adsorbable Aromatic Halides: A Proton-Induced Pathway. Angewandte Chemie, 2015, 127, n/a-n/a.	2.0	0