Paul A O'gorman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9579704/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	More extreme precipitation in the world's dry and wet regions. Nature Climate Change, 2016, 6, 508-513.	18.8	1,043
2	The physical basis for increases in precipitation extremes in simulations of 21st-century climate change. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 14773-14777.	7.1	853
3	Precipitation Extremes Under Climate Change. Current Climate Change Reports, 2015, 1, 49-59.	8.6	480
4	Storm track processes and the opposing influences of climate change. Nature Geoscience, 2016, 9, 656-664.	12.9	370
5	WATER VAPOR AND THE DYNAMICS OF CLIMATE CHANGES. Reviews of Geophysics, 2010, 48, .	23.0	358
6	Sensitivity of tropical precipitation extremes to climate change. Nature Geoscience, 2012, 5, 697-700.	12.9	249
7	The Hydrological Cycle over a Wide Range of Climates Simulated with an Idealized GCM. Journal of Climate, 2008, 21, 3815-3832.	3.2	240
8	The Response of Precipitation Minus Evapotranspiration to Climate Warming: Why the "Wet-Get-Wetter, Dry-Get-Drier―Scaling Does Not Hold over Land*. Journal of Climate, 2015, 28, 8078-8092.	3.2	237
9	Using Machine Learning to Parameterize Moist Convection: Potential for Modeling of Climate, Climate Change, and Extreme Events. Journal of Advances in Modeling Earth Systems, 2018, 10, 2548-2563.	3.8	219
10	Percentile indices for assessing changes in heavy precipitation events. Climatic Change, 2016, 137, 201-216.	3.6	197
11	Energetic Constraints on Precipitation Under Climate Change. Surveys in Geophysics, 2012, 33, 585-608.	4.6	196
12	Relative humidity changes in a warmer climate. Journal of Geophysical Research, 2010, 115, .	3.3	185
13	Trends in continental temperature and humidity directly linked to ocean warming. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4863-4868.	7.1	184
14	Intensification of Precipitation Extremes with Warming in a Cloud-Resolving Model. Journal of Climate, 2011, 24, 2784-2800.	3.2	181
15	Understanding Decreases in Land Relative Humidity with Global Warming: Conceptual Model and GCM Simulations. Journal of Climate, 2016, 29, 9045-9061.	3.2	174
16	Scaling of Precipitation Extremes over a Wide Range of Climates Simulated with an Idealized GCM. Journal of Climate, 2009, 22, 5676-5685.	3.2	172
17	Contrasting responses of mean and extreme snowfall to climate change. Nature, 2014, 512, 416-418.	27.8	171
18	Understanding the varied response of the extratropical storm tracks to climate change. Proceedings of the United States of America, 2010, 107, 19176-19180.	7.1	125

Paul A O'gorman

#	Article	IF	CITATIONS
19	Influence of entrainment on the thermal stratification in simulations of radiative onvective equilibrium. Geophysical Research Letters, 2013, 40, 4398-4403.	4.0	110
20	Land–Ocean Warming Contrast over a Wide Range of Climates: Convective Quasi-Equilibrium Theory and Idealized Simulations. Journal of Climate, 2013, 26, 4000-4016.	3.2	103
21	Stable machine-learning parameterization of subgrid processes for climate modeling at a range of resolutions. Nature Communications, 2020, 11, 3295.	12.8	103
22	Link between landâ€ocean warming contrast and surface relative humidities in simulations with coupled climate models. Geophysical Research Letters, 2013, 40, 5223-5227.	4.0	101
23	Energy of Midlatitude Transient Eddies in Idealized Simulations of Changed Climates. Journal of Climate, 2008, 21, 5797-5806.	3.2	100
24	Influence of microphysics on the scaling of precipitation extremes with temperature. Geophysical Research Letters, 2014, 41, 6037-6044.	4.0	86
25	The Effective Static Stability Experienced by Eddies in a Moist Atmosphere. Journals of the Atmospheric Sciences, 2011, 68, 75-90.	1.7	84
26	Climate research must sharpen its view. Nature Climate Change, 2017, 7, 89-91.	18.8	80
27	Climate at high-obliquity. Icarus, 2014, 243, 236-248.	2.5	76
28	Upward Shift of the Atmospheric General Circulation under Global Warming: Theory and Simulations. Journal of Climate, 2012, 25, 8259-8276.	3.2	72
29	A Climatology of Tropospheric Zonal-Mean Water Vapor Fields and Fluxes in Isentropic Coordinates. Journal of Climate, 2006, 19, 5918-5933.	3.2	57
30	Increases in moistâ€convective updraught velocities with warming in radiativeâ€convective equilibrium. Quarterly Journal of the Royal Meteorological Society, 2015, 141, 2828-2838.	2.7	56
31	Towards advancing scientific knowledge of climate change impacts on short-duration rainfall extremes. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20190542.	3.4	56
32	Extratropical Cyclones in Idealized Simulations of Changed Climates. Journal of Climate, 2015, 28, 9373-9392.	3.2	55
33	Use of Neural Networks for Stable, Accurate and Physically Consistent Parameterization of Subgrid Atmospheric Processes With Good Performance at Reduced Precision. Geophysical Research Letters, 2021, 48, e2020GL091363.	4.0	50
34	Moist Convection and the Thermal Stratification of the Extratropical Troposphere. Journals of the Atmospheric Sciences, 2008, 65, 3571-3583.	1.7	45
35	Changing duration and spatial extent of midlatitude precipitation extremes across different climates. Geophysical Research Letters, 2017, 44, 5863-5871.	4.0	44
36	Effect of Schmidt number on the velocity–scalar cospectrum in isotropic turbulence with a mean scalar gradient. Journal of Fluid Mechanics, 2005, 532, 111-140.	3.4	30

Paul A O'gorman

#	Article	IF	CITATIONS
37	Vertical structure of warming consistent with an upward shift in the middle and upper troposphere. Geophysical Research Letters, 2013, 40, 1838-1842.	4.0	30
38	Stochastic Models for the Kinematics of Moisture Transport and Condensation in Homogeneous Turbulent Flows. Journals of the Atmospheric Sciences, 2006, 63, 2992-3005.	1.7	28
39	Response of Vertical Velocities in Extratropical Precipitation Extremes to Climate Change. Journal of Climate, 2020, 33, 7125-7139.	3.2	26
40	Weather-Layer Dynamics of Baroclinic Eddies and Multiple Jets in an Idealized General Circulation Model. Journals of the Atmospheric Sciences, 2008, 65, 524-535.	1.7	24
41	Moist Formulations of the Eliassen–Palm Flux and Their Connection to the Surface Westerlies. Journals of the Atmospheric Sciences, 2017, 74, 513-530.	1.7	18
42	Increase in the skewness of extratropical vertical velocities with climate warming: fully nonlinear simulations versus moist baroclinic instability. Quarterly Journal of the Royal Meteorological Society, 2018, 144, 208-217.	2.7	17
43	Importance of Laplacian of Low-Level Warming for the Response of Precipitation to Climate Change over Tropical Oceans. Journal of Climate, 2020, 33, 4403-4417.	3.2	17
44	Changing available energy for extratropical cyclones and associated convection in Northern Hemisphere summer. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 4105-4110.	7.1	16
45	Effective stability in a moist baroclinic wave. Atmospheric Science Letters, 2015, 16, 56-62.	1.9	14
46	Accurate computation of moist available potential energy with the Munkres algorithm. Quarterly Journal of the Royal Meteorological Society, 2017, 143, 288-292.	2.7	14
47	The Relative Humidity in an Isentropic Advection–Condensation Model: Limited Poleward Influence and Properties of Subtropical Minima. Journals of the Atmospheric Sciences, 2011, 68, 3079-3093.	1.7	13
48	Twenty-First-Century Changes in U.S. Regional Heavy Precipitation Frequency Based on Resolved Atmospheric Patterns. Journal of Climate, 2017, 30, 2501-2521.	3.2	12
49	Weakening of the Extratropical Storm Tracks in Solar Geoengineering Scenarios. Geophysical Research Letters, 2020, 47, e2020GL087348.	4.0	12
50	Scaling of the entropy budget with surface temperature in radiativeâ€convective equilibrium. Journal of Advances in Modeling Earth Systems, 2016, 8, 1132-1150.	3.8	11
51	Response of extreme precipitation to uniform surface warming in quasi-global aquaplanet simulations at high resolution. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20190543.	3.4	11
52	Elements of the Dynamical Response to Climate Change over the Mediterranean. Journal of Climate, 2021, 34, 1135-1146.	3.2	9
53	Summerâ€Winter Contrast in the Response of Precipitation Extremes to Climate Change Over Northern Hemisphere Land. Geophysical Research Letters, 2022, 49,	4.0	5
54	Energetic Constraints on Precipitation Under Climate Change. Space Sciences Series of ISSI, 2011, , 253-276.	0.0	1

#	Article	IF	CITATIONS
55	Tropical precipitation clusters as islands on a rough waterâ€vapor topography. Quarterly Journal of the Royal Meteorological Society, 0, , .	2.7	0