Maggie Tse

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9579633/publications.pdf Version: 2024-02-01

MACCIE TSE

#	Article	IF	CITATIONS
1	Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light. Nature Photonics, 2013, 7, 613-619.	31.4	825
2	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2018, 21, 3.	26.7	808
3	Quantum-Enhanced Advanced LIGO Detectors in the Era of Gravitational-Wave Astronomy. Physical Review Letters, 2019, 123, 231107.	7.8	359
4	Sensitivity and performance of the Advanced LIGO detectors in the third observing run. Physical Review D, 2020, 102, .	4.7	196
5	A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo. Astrophysical Journal, 2021, 909, 218.	4.5	144
6	LIGO detector characterization in the second and third observing runs. Classical and Quantum Gravity, 2021, 38, 135014.	4.0	128
7	Quantum correlations between light and the kilogram-mass mirrors of LIGO. Nature, 2020, 583, 43-47.	27.8	102
8	Frequency-Dependent Squeezing for Advanced LIGO. Physical Review Letters, 2020, 124, 171102.	7.8	99
9	Audio-Band Frequency-Dependent Squeezing for Gravitational-Wave Detectors. Physical Review Letters, 2016, 116, 041102.	7.8	77
10	The basic physics of the binary black hole merger GW150914. Annalen Der Physik, 2017, 529, 1600209.	2.4	69
11	Approaching the motional ground state of a 10-kg object. Science, 2021, 372, 1333-1336.	12.6	59
12	Ultra-low phase noise squeezed vacuum source for gravitational wave detectors. Optica, 2016, 3, 682.	9.3	52
13	Search for Gravitational Waves Associated with Gamma-Ray Bursts during the First Advanced LIGO Observing Run and Implications for the Origin of GRB 150906B. Astrophysical Journal, 2017, 841, 89.	4.5	52
14	Environmental noise in advanced LIGO detectors. Classical and Quantum Gravity, 2021, 38, 145001.	4.0	38
15	LIGOâ $€$ ™s quantum response to squeezed states. Physical Review D, 2021, 104, .	4.7	19
16	Improving the robustness of the advanced LIGO detectors to earthquakes. Classical and Quantum Gravity, 2020, 37, 235007.	4.0	11
17	Low phase noise squeezed vacuum for future generation gravitational wave detectors. Classical and Quantum Gravity, 2020, 37, 185014.	4.0	5
18	Point Absorber Limits to Future Gravitational-Wave Detectors. Physical Review Letters, 2021, 127, 241102.	7.8	3

#	Article	IF	CITATIONS
19	Probing squeezing for gravitational-wave detectors with an audio-band field. Physical Review D, 2022, 105, .	4.7	3
20	Advanced LIGO squeezer platform for backscattered light and optical loss reduction. Classical and Quantum Gravity, 2020, 37, 215015.	4.0	2