
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9579537/publications.pdf Version: 2024-02-01

TIENAN LIN

#	Article	IF	CITATIONS
1	Unsupported Nanoporous Platinum–Iron Bimetallic Catalyst for the Chemoselective Hydrogenation of Halonitrobenzenes to Haloanilines. ACS Applied Materials & Interfaces, 2021, 13, 23655-23661.	8.0	16
2	Pd-Catalyzed Indolization/ <i>peri</i> -C–H Annulation/ <i>N</i> -Dealkylation Cascade to Cyclopenta-Fused Acenaphtho[1,2- <i>b</i>]indole Scaffold. Organic Letters, 2021, 23, 9431-9435.	4.6	11
3	Recent topics on synthesis of π-extended polycycles by cascade annulations. Tetrahedron Letters, 2020, 61, 151514.	1.4	12
4	Intermolecular Oxidative Friedel–Crafts Reaction Triggered Ring Expansion Affording 9,10-Diarylphenanthrenes. Organic Letters, 2020, 22, 8920-8924.	4.6	10
5	Amorphous/low-crystalline core/shell-type nanoparticles as highly efficient and self-stabilizing catalysts for alkaline hydrogen evolution. Chemical Communications, 2020, 56, 8984-8987.	4.1	4
6	Tandem Oxidative Ring Expansion for Synthesis of Dibenzocyclooctaphenanthrenes. Organic Letters, 2020, 22, 5121-5125.	4.6	18
7	Heterogeneous Catalytic Reduction of Tertiary Amides with Hydrosilanes Using Unsupported Nanoporous Gold Catalyst. Advanced Synthesis and Catalysis, 2019, 361, 4817-4824.	4.3	11
8	Unsupported Nanoporous Gold atalyzed Chemoselective Reduction of Quinolines Using Formic Acid as a Hydrogen Source. ChemistrySelect, 2019, 4, 6572-6577.	1.5	7
9	Catalytic Performance of Nanoporous Metal Skeleton Catalysts for Molecular Transformations. ChemSusChem, 2019, 12, 2936-2954.	6.8	28
10	Nanoporous Gold-Catalyzed Diboration of Methylenecyclopropanes via a Distal Bond Cleavage. ACS Catalysis, 2018, 8, 5901-5906.	11.2	22
11	Pd atalyzed Consecutive Câ^'Hâ€Arylationâ€Triggered Cyclotrimerization: Synthesis of Starâ€5haped Benzotristhiazoles and Benzotrisoxazoles. Chemistry - A European Journal, 2018, 24, 9041-9050.	3.3	8
12	Pd-Catalyzed cascade cyclization of <i>o</i> -alkynylanilines <i>via</i> C–H/C–N bond cleavage leading to dibenzo[<i>a</i> , <i>c</i>]carbazoles. Organic and Biomolecular Chemistry, 2018, 16, 5236-5240.	2.8	16
13	Comparative Study of Single and Dual Gain-Narrowed Emission in Thiophene/Furan/Phenylene Co-Oligomer Single Crystals. Journal of Physical Chemistry C, 2017, 121, 2364-2368.	3.1	12
14	Synthesis of extended polycyclic aromatic hydrocarbons by oxidative tandem spirocyclization and 1,2-aryl migration. Nature Communications, 2017, 8, 15073.	12.8	57
15	Synthesis and Properties of Dicyanomethylene-Endcapped Thienopyrrole-Based Quinoidal <i>S</i> , <i>N</i> -Heteroacenes. Bulletin of the Chemical Society of Japan, 2017, 90, 789-797.	3.2	10
16	A highly emissive distyrylthieno[3,2-b]thiophene based red luminescent organic single crystal: Aggregation induced emission, optical waveguide edge emission, and balanced ambipolar carrier transport. Organic Electronics, 2016, 34, 23-27.	2.6	18
17	<i>N</i> -Methyl Transfer Induced Copper-Mediated Oxidative Diamination of Alkynes. Organic Letters, 2016, 18, 2487-2490.	4.6	52
18	Core–shell Pd–P@Pt nanoparticles as efficient catalysts for electrooxidation of formic acid. Journal of Applied Electrochemistry, 2016, 46, 1109-1118.	2.9	15

#	Article	IF	CITATIONS
19	Unsupported Nanoporous Gold Catalyst for Chemoselective Hydrogenation Reactions under Low Pressure: Effect of Residual Silver on the Reaction. Journal of the American Chemical Society, 2016, 138, 10356-10364.	13.7	90
20	Hierarchical nanoporosity enhanced reversible capacity of bicontinuous nanoporous metal based Li-O2 battery. Scientific Reports, 2016, 6, 33466.	3.3	52
21	FeCl ₃ â€Mediated Oxidative Spirocyclization of Difluorenylidene Diarylethanes Leading to Dispiro[fluoreneâ€9,5′â€indeno[2,1â€ <i>a</i>]indeneâ€10′,9′′â€fluorene]s. Angewandte Chemie - Edition, 2016, 55, 259-263.	Int ama tiona	125
22	Biphenyl end-capped bithiazole co-oligomers for high performance organic thin film field effect transistors. Chemical Communications, 2016, 52, 4926-4929.	4.1	16
23	2-Positional pyrene end-capped oligothiophenes for high performance organic field effect transistors. Chemical Communications, 2016, 52, 4800-4803.	4.1	41
24	Manganese powder promoted highly efficient and selective synthesis of fullerene mono- and biscycloadducts at room temperature. Scientific Reports, 2015, 5, 13920.	3.3	7
25	Triflic Acid Mediated Cascade Cyclization of Aryldiynes for the Synthesis of Indeno[1,2â€ <i>c</i>]chromenes: Application to Dyeâ€6ensitized Solar Cells. Chemistry - A European Journal, 2015, 21, 4065-4070.	3.3	26
26	Thieno[2,3,a]carbazole donor-based organic dyes for high efficiency dye-sensitized solar cells. Organic Chemistry Frontiers, 2015, 2, 253-258.	4.5	13
27	Highly efficient heterogeneous aerobic cross-dehydrogenative coupling via C–H functionalization of tertiary amines using a nanoporous gold skeleton catalyst. Chemical Communications, 2015, 51, 12764-12767.	4.1	65
28	Efficient thieno[3,2-a]carbazole-based organic dyes for dye-sensitized solar cells. Tetrahedron, 2015, 71, 6534-6540.	1.9	9
29	Ni-Catalyzed direct 1,4-difunctionalization of [60]fullerene with benzyl bromides. Chemical Communications, 2015, 51, 6392-6394.	4.1	42
30	Charge transport in organic crystals: Critical role of correlated fluctuations unveiled by analysis of Feynman diagrams. Journal of Chemical Physics, 2015, 142, 144503.	3.0	8
31	Pd-catalyzed cascade cyclization of o -alkynylarylbromides with dialkylalkynes via consecutive carbopalladation. Tetrahedron Letters, 2015, 56, 3133-3136.	1.4	3
32	Highly chemoselective reduction of imines using a AuNPore/PhMe 2 SiH/water system and its application to reductive amination. Tetrahedron, 2015, 71, 7154-7158.	1.9	22
33	Development of New Transition-Metal-Catalyzed Fullerene Functionalization. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2015, 73, 241-253.	0.1	0
34	Metal atalyzed Annulation Reactions for π onjugated Polycycles. Chemistry - A European Journal, 2014, 20, 3554-3576.	3.3	144
35	Cu-Catalyzed C–H Amination of Hydrofullerenes Leading to 1,4-Difunctionalized Fullerenes. Organic Letters, 2014, 16, 620-623.	4.6	51
36	NBS-promoted oxidation of fullerene monoradicals leading to regioselective 1,4-difunctional fullerenes. Chemical Communications, 2014, 50, 15730-15732.	4.1	14

#	Article	IF	CITATIONS
37	The synergistic effect of nanoporous AuPd alloy catalysts on highly chemoselective 1,4-hydrosilylation of conjugated cyclic enones. Chemical Communications, 2014, 50, 3344.	4.1	31
38	Carboxylic Acid-Catalyzed Highly Efficient and Selective Hydroboration of Alkynes with Pinacolborane. Organic Letters, 2014, 16, 4670-4673.	4.6	94
39	Chemoselective reduction of α,β-unsaturated aldehydes using an unsupported nanoporous gold catalyst. Chemical Communications, 2014, 50, 14401-14404.	4.1	41
40	Mixing Time of Molecules Inside of Nanoporous Gold. SIAM Journal on Applied Mathematics, 2014, 74, 1298-1314.	1.8	3
41	Rh(III)-Catalyzed Regioselective Functionalization of C–H Bonds of Naphthylcarbamates for Oxidative Annulation with Alkynes. Organic Letters, 2014, 16, 4830-4833.	4.6	78
42	Exclusive Chemoselective Reduction of Imines in the Coexistence of Aldehydes Using AuNPore Catalyst. Organic Letters, 2014, 16, 2558-2561.	4.6	42
43	Pd-Catalyzed Synthesis of 9,9′-Bifluorenylidene Derivatives via Dual C–H Activation of Bis-biaryl Alkynes. Journal of the American Chemical Society, 2014, 136, 9540-9543.	13.7	59
44	Thieno[2,3-a]carbazole-based donor–π–acceptor organic dyes for efficient dye-sensitized solar cells. Tetrahedron, 2014, 70, 6211-6216.	1.9	18
45	Pd-Catalyzed Cascade Crossover Annulation of <i>o</i> -Alkynylarylhalides and Diarylacetylenes Leading to Dibenzo[<i>a</i> , <i>e</i>]pentalenes. Journal of the American Chemical Society, 2013, 135, 10222-10225.	13.7	91
46	Co-Catalyzed Radical Cycloaddition of [60]Fullerene with Active Dibromides: Selective Synthesis of Carbocycle-Fused Fullerene Monoadducts. Organic Letters, 2013, 15, 4030-4033.	4.6	58
47	Deuterium Isotope Effect on Bulk Heterojunction Solar Cells. Enhancement of Organic Photovoltaic Performances Using Monobenzyl Substituted Deuteriofullerene Acceptors. Organic Letters, 2013, 15, 5674-5677.	4.6	12
48	Theoretical Analysis on the Optoelectronic Properties of Single Crystals of Thiophene-furan-phenylene Co-Oligomers: Efficient Photoluminescence due to Molecular Bending. Journal of Physical Chemistry C, 2013, 117, 8072-8078.	3.1	30
49	Remarkable Catalytic Property of Nanoporous Gold on Activation of Diborons for Direct Diboration of Alkynes. Organic Letters, 2013, 15, 5766-5769.	4.6	101
50	Functional 2-benzyl-1,2-dihydro[60]fullerenes as acceptors for organic photovoltaics: facile synthesis and high photovoltaic performances. Tetrahedron, 2013, 69, 1302-1306.	1.9	12
51	Unsupported Nanoporous Gold Catalyst for Highly Selective Hydrogenation of Quinolines. Organic Letters, 2013, 15, 1484-1487.	4.6	99
52	Structure–property relationship of different electron donors: novel organic sensitizers based on fused dithienothiophene π-conjugated linker for high efficiency dye-sensitized solar cells. Tetrahedron, 2013, 69, 3444-3450.	1.9	27
53	Single crystal biphenyl end-capped furan-incorporated oligomers: influence of unusual packing structure on carrier mobility and luminescence. Journal of Materials Chemistry C, 2013, 1, 4163.	5.5	73
54	From molecular catalysts to nanostructured materials skeleton catalysts. Pure and Applied Chemistry, 2012, 84, 1771-1784.	1.9	28

#	Article	IF	CITATIONS
55	Synthesis of 2,3-dihydro-1H-inden-1-one derivatives via Ni-catalyzed intramolecular hydroacylation. Tetrahedron, 2012, 68, 5223-5228.	1.9	24
56	Structure–property relationship of naphthalene based donor–π–acceptor organic dyes for dye-sensitized solar cells: remarkable improvement of open-circuit photovoltage. Journal of Materials Chemistry, 2012, 22, 22550.	6.7	39
57	NaOH-Catalyzed Dimerization of Monofunctionalized Hydrofullerenes: Transition-Metal-Free, General, and Efficient Synthesis of Single-Bonded [60]Fullerene Dimers. Organic Letters, 2012, 14, 3466-3469.	4.6	34
58	Click Chemistry of Alkyne–Azide Cycloaddition using Nanostructured Copper Catalysts. ChemCatChem, 2012, 4, 1217-1229.	3.7	105
59	Nanoporous Gold Catalyst for Highly Selective Semihydrogenation of Alkynes: Remarkable Effect of Amine Additives. Journal of the American Chemical Society, 2012, 134, 17536-17542.	13.7	201
60	Synthesis of new donor–acceptor–donor materials via Au-catalyzed double cascade cyclization. Tetrahedron Letters, 2012, 53, 914-918.	1.4	33
61	Palladium-catalyzed bisfunctionalization of active alkenes by β-acetonitrile-α-allyl addition: application to the synthesis of unsymmetric 1,4-di(organo)fullerene derivatives. Tetrahedron Letters, 2012, 53, 1210-1213.	1.4	7
62	Cascade cyclization of aryldiynes using iodine: synthesis of iodo-substituted benzo[b]naphtho[2,1-d]thiophene derivatives for dye-sensitized solar cells. Tetrahedron Letters, 2012, 53, 1946-1950.	1.4	36
63	Highly Efficient Cu(OAc) ₂ â€Catalyzed Dimerization of Monofunctionalized Hydrofullerenes Leading to Singleâ€Bonded [60]Fullerene Dimers. Angewandte Chemie - International Edition, 2012, 51, 802-806.	13.8	86
64	Facile synthesis of 3,4-dihalofurans via electrophilic iodocyclization. Chemical Communications, 2011, 47, 4541.	4.1	46
65	Facile synthesis of diiodinated dihydronaphthalenes and naphthalenes via iodine mediated electrophilic cyclization. Chemical Communications, 2011, 47, 4013.	4.1	34
66	Facile synthesis of dihaloheterocycles via electrophilic iodocyclization. Tetrahedron, 2011, 67, 10147-10155.	1.9	41
67	Cobalt-Catalyzed Hydroalkylation of [60]Fullerene with Active Alkyl Bromides: Selective Synthesis of Monoalkylated Fullerenes. Journal of the American Chemical Society, 2011, 133, 12842-12848.	13.7	91
68	Nanoporous Copper Metal Catalyst in Click Chemistry: Nanoporosityâ€Dependent Activity without Supports and Bases. Advanced Synthesis and Catalysis, 2011, 353, 3095-3100.	4.3	70
69	1,3-Diynes synthesis by homo-coupling of terminal alkynes using a Pd(PPh3)4/Ag2O simple catalyst system. Journal of Organometallic Chemistry, 2011, 696, 1479-1482.	1.8	31
70	Triflic acid-catalyzed cascade cyclization of arenyl enynes via acetylene-cation cyclization and Friedel–Crafts type reaction. Tetrahedron Letters, 2011, 52, 2069-2071.	1.4	33
71	Facile synthesis of 3,4-diiododihydrothiophenes via electrophilic iodocyclization. Tetrahedron Letters, 2011, 52, 936-938.	1.4	30
72	Gold-catalyzed regiospecific intermolecular hydrothiolation of allenes. Tetrahedron Letters, 2010, 51, 4627-4629.	1.4	44

#	Article	IF	CITATIONS
73	BrÃ,nsted Acid-Catalyzed Cascade Cycloisomerization of Enynes via Acetylene Cations and sp ³ -Hybridized Câ^'H Bond Activation. Journal of the American Chemical Society, 2010, 132, 5590-5591.	13.7	70
74	Palladium-Catalyzed Three-Component [3 + 2] Cycloaddition of Propargyl Trifluoroacetates, Ethylidene Malononitriles, and Allyltributylstannane. Organic Letters, 2010, 12, 864-866.	4.6	7
75	Benzannulation from Alkyne without Metallic Catalysts at Room Temperature to 100 °C. Organic Letters, 2010, 12, 388-390.	4.6	15
76	Triflic Acid Catalyzed Synthesis of Spirocycles via Acetylene Cations. Angewandte Chemie - International Edition, 2009, 48, 5893-5896.	13.8	71
77	Alkyne activation with BrÃ,nsted acids, iodine, or gold complexes, and its fate leading to synthetic application. Chemical Communications, 2009, , 5075.	4.1	290
78	Facile and efficient synthesis of indazole derivatives by 1,3-cycloaddition of arynes with diazo compounds and azomethine imides. Collection of Czechoslovak Chemical Communications, 2009, 74, 957-972.	1.0	11
79	TfOH-catalyzed intramolecular alkyne–ketone metathesis leading to highly substituted five-membered cyclic enones. Chemical Communications, 2009, , 3533.	4.1	79
80	Copper-catalyzed synthesis of 5-substituted 1H-tetrazoles via the [3+2] cycloaddition of nitriles and trimethylsilyl azide. Tetrahedron Letters, 2008, 49, 2824-2827.	1.4	179
81	Synthesis of 5‣ubstituted 1 <i>H</i> â€Tetrazoles by the Copper atalyzed [3+2] Cycloaddition of Nitriles and Trimethylsilyl Azide. Chemistry - an Asian Journal, 2008, 3, 1575-1580.	3.3	48
82	Gold-Catalyzed Synthesis of Polycyclic Enones from Carbon Tethered 1,3-Enynyl Carbonyls via Tandem Heteroenyne Metathesis and Nazarov Reaction. Organic Letters, 2008, 10, 3137-3139.	4.6	137
83	Gold-Catalyzed Intramolecular Carbocyclization of Alkynyl Ketones Leading to Highly Substituted Cyclic Enones. Organic Letters, 2007, 9, 5259-5262.	4.6	144
84	An Efficient, Facile, and General Synthesis of 1H-Indazoles by 1,3-Dipolar Cycloaddition of Arynes with Diazomethane Derivatives. Angewandte Chemie - International Edition, 2007, 46, 3323-3325.	13.8	152
85	Suppression of β-Hydride Elimination in the Intramolecular Hydrocarboxylation of Alkynes leading to the Formation of Lactones. Advanced Synthesis and Catalysis, 2007, 349, 680-684.	4.3	33
86	Synthesis of 1-Substituted Tetrazoles via the Acid-Catalyzed [3 + 2] Cycloaddition Between Isocyanides and Trimethylsilyl Azide ChemInform, 2005, 36, no.	0.0	0
87	Facile Deallylation Protocols for the Preparation of N-Unsubstituted Triazoles and Tetrazoles ChemInform, 2005, 36, no.	0.0	0
88	Facile Deallylation Protocols for the Preparation ofN-Unsubstituted Triazoles and Tetrazoles. Journal of Organic Chemistry, 2005, 70, 6389-6397.	3.2	30
89	Reduction of Carbonyl Function to a Methyl Group. Synthesis, 2004, 2004, 308-311.	2.3	7
90	Copper-Catalyzed Synthesis ofN-Unsubstituted 1,2,3-Triazoles from Nonactivated Terminal Alkynes. European Journal of Organic Chemistry, 2004, 2004, 3789-3791.	2.4	162

#	Article	IF	CITATIONS
91	Four-Component Coupling Reactions of Silylacetylenes, Allyl Carbonates, and Trimethylsilyl Azide Catalyzed by a Pd(0)—Cu(I) Bimetallic Catalyst. Fully Substituted Triazole Synthesis from Seemingly Internal Alkynes ChemInform, 2004, 35, no.	0.0	0
92	Tetrazole Synthesis via the Palladium-Catalyzed Three Component Coupling Reaction ChemInform, 2004, 35, no.	0.0	0
93	A One-Pot Procedure for the Regiocontrolled Synthesis of Allyltriazoles via the Pd—Cu Bimetallic Catalyzed Three-Component Coupling Reaction of Nonactivated Terminal Alkynes, Allyl Carbonate, and Trimethylsilyl Azide ChemInform, 2004, 35, no.	0.0	0
94	Four-component coupling reactions of silylacetylenes, allyl carbonates, and trimethylsilyl azide catalyzed by a Pd(0)–Cu(I) bimetallic catalyst. Fully substituted triazole synthesis from seemingly internal alkynes. Tetrahedron Letters, 2004, 45, 689-691.	1.4	58
95	Synthesis of 1-substituted tetrazoles via the acid-catalyzed [3+2] cycloaddition between isocyanides and trimethylsilyl azide. Tetrahedron Letters, 2004, 45, 9435-9437.	1.4	115
96	A One-Pot Procedure for the Regiocontrolled Synthesis of Allyltriazoles via the Pdâ^'Cu Bimetallic Catalyzed Three-Component Coupling Reaction of Nonactivated Terminal Alkynes, Allyl Carbonate, and Trimethylsilyl Azide. Journal of Organic Chemistry, 2004, 69, 2386-2393.	3.2	101
97	Regiospecific Synthesis of 2-Allyl-1,2,3-triazoles by Palladium-Catalyzed 1,3-Dipolar Cycloaddition ChemInform, 2003, 34, no.	0.0	0
98	Palladium-Catalyzed Selective Synthesis of 2-Allyltetrazoles ChemInform, 2003, 34, no.	0.0	0
99	Synthesis of Triazoles from Nonactivated Terminal Alkynes via the Three-Component Coupling Reaction Using a Pd(0)—Cu(I) Bimetallic Catalyst ChemInform, 2003, 34, no.	0.0	0
100	Synthesis of Triazoles from Nonactivated Terminal Alkynes via the Three-Component Coupling Reaction Using a Pd(0)â^'Cu(I) Bimetallic Catalyst. Journal of the American Chemical Society, 2003, 125, 7786-7787.	13.7	185
101	Palladium-Catalyzed Selective Synthesis of 2-Allyltetrazoles. Journal of Organic Chemistry, 2002, 67, 7413-7417.	3.2	57
102	Cyanamide Synthesis by the Palladium atalyzed Cleavage of a Siâ^'N Bond. Angewandte Chemie - International Edition, 2002, 41, 1780-1782.	13.8	38
103	Regiospecific synthesis of 2-allyl-1,2,3-triazoles by palladium-catalyzed 1,3-dipolar cycloaddition. Tetrahedron Letters, 2002, 43, 9707-9710.	1.4	79
104	Novel Synthetic Route to Allyl Cyanamides:Â Palladium-Catalyzed Coupling of Isocyanides, Allyl Carbonate, and Trimethylsilyl Azide. Journal of the American Chemical Society, 2001, 123, 9453-9454.	13.7	87
105	Tetrazole synthesis via the palladium-catalyzed three component coupling reaction. Molecular Diversity, 2000, 6, 181-192.	3.9	19