Ãron Pekker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9579524/publications.pdf Version: 2024-02-01

ÃRON DEKKED

#	Article	IF	CITATIONS
1	Effect of Atomic Interconnects on Percolation in Single-Walled Carbon Nanotube Thin Film Networks. Nano Letters, 2014, 14, 3930-3937.	9.1	42
2	Large-scale cellulose-assisted transfer of graphene toward industrial applications. Carbon, 2016, 110, 286-291.	10.3	38
3	Networks of Semiconducting SWNTs: Contribution of Midgap Electronic States to the Electrical Transport. Accounts of Chemical Research, 2015, 48, 2270-2279.	15.6	37
4	Signature of Large-Gap Quantum Spin Hall State in the Layered Mineral Jacutingaite. Nano Letters, 2020, 20, 5207-5213.	9.1	33
5	On the composition depth profile of electrodeposited Fe–Co–Ni alloys. Electrochimica Acta, 2010, 55, 4734-4741.	5.2	31
6	Effect of first row transition metals on the conductivity of semiconducting single-walled carbon nanotube networks. Applied Physics Letters, 2012, 100, .	3.3	28
7	Ferrocene encapsulation in carbon nanotubes: Various methods of filling and investigation. Physica Status Solidi (B): Basic Research, 2011, 248, 2512-2515.	1.5	23
8	Optical and electronic properties of thin films and solutions of functionalized forms of graphene and related carbon materials. Carbon, 2014, 72, 82-88.	10.3	23
9	Organometallic chemistry of graphene: Photochemical complexation of graphene with group 6 transition metals. Carbon, 2018, 129, 450-455.	10.3	22
10	Effect of Group 6 Transition Metal Coordination on the Conductivity of Graphite Nanoplatelets. Materials Letters, 2012, 80, 171-174.	2.6	20
11	Calculation of optical constants from carbon nanotube transmission spectra. Physica Status Solidi (B): Basic Research, 2006, 243, 3485-3488.	1.5	18
12	Topochemical copolymerization of fullerenes with cubane in their rotor-stator phases. Physica Status Solidi (B): Basic Research, 2006, 243, 2985-2989.	1.5	16
13	Growth of Carbon Nanotubes inside Boron Nitride Nanotubes by Coalescence of Fullerenes: Toward the World's Smallest Coaxial Cable. Small Methods, 2017, 1, 1700184.	8.6	16
14	Characterization of the anisotropic etching of silicon in two-component alkaline solution. Journal of Micromechanics and Microengineering, 2007, 17, 1916-1922.	2.6	14
15	Hexahapto-lanthanide interconnects between the conjugated surfaces of single-walled carbon nanotubes. Dalton Transactions, 2014, 43, 7379-7382.	3.3	14
16	Vibrational Spectra of C ₆₀ ·C ₈ H ₈ and C ₇₀ ·C ₈ H ₈ in the Rotor-stator and Polymer Phases. Journal of Physical Chemistry B, 2007, 111, 12375-12382.	2.6	12
17	Wideâ€range optical spectra of carbon nanotubes: a comparative study. Physica Status Solidi (B): Basic Research, 2008, 245, 2229-2232.	1.5	12
18	Photochemical generation of bis-hexahapto chromium interconnects between the graphene surfaces of single-walled carbon nanotubes. Materials Horizons, 2015, 2, 81-85.	12.2	12

Ãron Pekker

#	Article	IF	CITATIONS
19	Mapping of Functionalized Regions on Carbon Nanotubes by Scanning Tunneling Microscopy. Journal of Physical Chemistry C, 2011, 115, 3229-3235.	3.1	10
20	New design and calibration method for a tunable single-grating spatial heterodyne spectrometer. Optics Express, 2020, 28, 22720.	3.4	10
21	Enhancement of X-ray-Excited Red Luminescence of Chromium-Doped Zinc Gallate via Ultrasmall Silicon Carbide Nanocrystals. Chemistry of Materials, 2021, 33, 2457-2465.	6.7	9
22	Electronic Properties of Propylamineâ€Functionalized Singleâ€Walled Carbon Nanotubes. ChemPhysChem, 2010, 11, 2444-2448.	2.1	8
23	A systematic study of optical and Raman spectra of peapodâ€based DWNTs. Physica Status Solidi (B): Basic Research, 2010, 247, 2843-2846.	1.5	7
24	Optical detection of charge dynamics in CH ₃ NH ₃ PbI ₃ /carbon nanotube composites. Nanoscale, 2017, 9, 17781-17787.	5.6	7
25	Diameter selectivity of nanotube sidewall functionalization probed by optical spectroscopy. Physica Status Solidi (B): Basic Research, 2008, 245, 1954-1956.	1.5	6
26	Scattering nearâ€field optical microscopy on metallic and semiconducting carbon nanotube bundles in the infrared. Physica Status Solidi (B): Basic Research, 2016, 253, 2413-2416.	1.5	6
27	Pressureâ€induced phenomena in singleâ€walled carbon nanotubes. Physica Status Solidi (B): Basic Research, 2007, 244, 3982-3985.	1.5	5
28	Bundle versus network conductivity of carbon nanotubes separated by type. European Physical Journal B, 2014, 87, 1.	1.5	5
29	Effect of Lanthanide Metal Complexation on the Properties and Electronic Structure of Single-Walled Carbon Nanotube Films. ACS Applied Materials & Interfaces, 2015, 7, 28013-28018.	8.0	5
30	Polaritonic Enhancement of Near-Field Scattering of Small Molecules Encapsulated in Boron Nitride Nanotubes: Chemical Reactions in Confined Spaces. ACS Applied Nano Materials, 2021, 4, 4335-4339.	5.0	5
31	Pressure studies on fullerene peapods. Physica Status Solidi (B): Basic Research, 2011, 248, 2732-2735.	1.5	4
32	The Role of Potassium in the Segregation of MAPb(Br 0.6 I 0.4) 3 Mixedâ€Halide Perovskite in Different Environments. Physica Status Solidi - Rapid Research Letters, 2020, 14, 2000335.	2.4	4
33	Infrared and Raman investigation of carbon nanotubeâ€polyallylamine hybrid systems. Physica Status Solidi (B): Basic Research, 2010, 247, 2884-2886.	1.5	3
34	Cloaking by π-electrons in the infrared. Physica Status Solidi (B): Basic Research, 2016, 253, 2457-2460.	1.5	3
35	Nanoscale Characterization of Individual Horizontally Aligned Single-Walled Carbon Nanotubes. Physica Status Solidi (B): Basic Research, 2017, 254, 1700433.	1.5	3
36	Near-field infrared microscopy of nanometer-sized nickel clusters inside single-walled carbon nanotubes. RSC Advances, 2019, 9, 34120-34124.	3.6	3

Ãron Pekker

#	Article	IF	CITATIONS
37	Investigation of hydrogenated HiPCo nanotubes by infrared spectroscopy. Physica Status Solidi (B): Basic Research, 2010, 247, 2855-2858.	1.5	2
38	Breakdown of diameter selectivity in a reductive hydrogenation reaction of single-walled carbon nanotubes. Chemical Physics Letters, 2015, 618, 214-218.	2.6	2
39	(Invited) Effect of Covalent Chemistry on the Electronic Structure and Properties of the Carbon Allotropes. ECS Transactions, 2017, 77, 569-579.	0.5	2
40	Direct Visualization of Ultrastrong Coupling between Luttinger-Liquid Plasmons and Phonon Polaritons. Nano Letters, 2022, 22, 3495-3502.	9.1	2
41	Method to determine the absorptance of thin films for photovoltaic technology. , 2010, , .		1
42	High-Resolution Nanospectroscopy of Boron Nitride Nanotubes. Physica Status Solidi (B): Basic Research, 2017, 254, 1700277.	1.5	0