Ali Rahmati

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9579345/publications.pdf

Version: 2024-02-01

35 papers	1,507 citations	361413 20 h-index	35 g-index
Papaa	5100 5225		9
36 all docs	36 docs citations	36 times ranked	1345 citing authors

#	Article	IF	CITATIONS
1	Strong Perpendicular Velocity-space Diffusion in Proton Beams Observed by Parker Solar Probe. Astrophysical Journal, 2022, 924, 112.	4.5	16
2	Modeling of Diffuse Auroral Emission at Mars: Contribution of MeV Protons. Journal of Geophysical Research: Space Physics, 2022, 127, .	2.4	10
3	Turbulence in the Sub-Alfvénic Solar Wind. Astrophysical Journal Letters, 2022, 926, L16.	8.3	36
4	Suprathermal Ion Energy Spectra and Anisotropies near the Heliospheric Current Sheet Crossing Observed by the Parker Solar Probe during Encounter 7. Astrophysical Journal, 2022, 927, 62.	4.5	3
5	Parker Solar Probe Observations of Solar Wind Energetic Proton Beams Produced by Magnetic Reconnection in the Nearâ€Sun Heliospheric Current Sheet. Geophysical Research Letters, 2022, 49, .	4.0	15
6	Density and Velocity Fluctuations of Alpha Particles in Magnetic Switchbacks. Astrophysical Journal, 2022, 933, 43.	4.5	6
7	Implantation of Martian atmospheric ions within the regolith of Phobos. Nature Geoscience, 2021, 14, 61-66.	12.9	9
8	Inferred Linear Stability of Parker Solar Probe Observations Using One- and Two-component Proton Distributions. Astrophysical Journal, 2021, 909, 7.	4.5	22
9	Prevalence of magnetic reconnection in the near-Sun heliospheric current sheet. Astronomy and Astrophysics, 2021, 650, A13.	5.1	23
10	Test Particle Model Predictions of SEP Electron Transport and Precipitation at Mars. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029132.	2.4	4
11	<i>Parker Solar Probe</i> Enters the Magnetically Dominated Solar Corona. Physical Review Letters, 2021, 127, 255101.	7.8	104
12	MAVEN SEP Observations of Scorpius Xâ€1 Xâ€Rays at Mars: A Midatmosphere Occultation Analysis Technique. Geophysical Research Letters, 2020, 47, e2020GL088927.	4.0	8
13	Magnetic Reconnection in the Ionosphere of Mars: The Role of Collisions. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA028036.	2.4	14
14	Parker Solar Probe Observations of Proton Beams Simultaneous with Ion-scale Waves. Astrophysical Journal, Supplement Series, 2020, 248, 5.	7.7	62
15	The Solar Probe ANalyzers—Electrons on the Parker Solar Probe. Astrophysical Journal, Supplement Series, 2020, 246, 74.	7.7	114
16	Pressure Gradients Driving Ion Transport in the Topside Martian Atmosphere. Journal of Geophysical Research: Space Physics, 2019, 124, 6117-6126.	2.4	9
17	Phobos Surface Sputtering as Inferred From MAVEN Ion Observations. Journal of Geophysical Research E: Planets, 2019, 124, 3385-3401.	3.6	12
18	Seasonal Variability of Neutral Escape from Mars as Derived From MAVEN Pickup Ion Observations. Journal of Geophysical Research E: Planets, 2018, 123, 1192-1202.	3.6	38

#	Article	IF	Citations
19	Global Aurora on Mars During the September 2017 Space Weather Event. Geophysical Research Letters, 2018, 45, 7391-7398.	4.0	44
20	Loss of the Martian atmosphere to space: Present-day loss rates determined from MAVEN observations and integrated loss through time. Icarus, 2018, 315, 146-157.	2.5	216
21	The September 2017 SEP Event in Context With the Current Solar Cycle: Mars Express ASPERAâ€3/IMA and MAVEN/SEP Observations. Geophysical Research Letters, 2018, 45, 7306-7311.	4.0	14
22	Energetic Particle Showers Over Mars from Comet C/2013 A1 Siding Spring. Journal of Geophysical Research: Space Physics, 2018, 123, 8778-8796.	2.4	11
23	MAVEN measured oxygen and hydrogen pickup ions: Probing the Martian exosphere and neutral escape. Journal of Geophysical Research: Space Physics, 2017, 122, 3689-3706.	2.4	55
24	Photochemical escape of oxygen from Mars: First results from MAVEN in situ data. Journal of Geophysical Research: Space Physics, 2017, 122, 3815-3836.	2.4	106
25	Hot oxygen escape from Mars: Simple scaling with solar EUV irradiance. Journal of Geophysical Research: Space Physics, 2017, 122, 1102-1116.	2.4	40
26	Cometary sputtering of the Martian atmosphere during the Siding Spring encounter. Icarus, 2016, 272, 301-308.	2.5	6
27	Suprathermal electrons near the nucleus of comet 67P/Churyumovâ€Gerasimenko at 3 AU: Model comparisons with Rosetta data. Journal of Geophysical Research: Space Physics, 2016, 121, 5815-5836.	2.4	49
28	Electron energetics in the Martian dayside ionosphere: Model comparisons with MAVEN data. Journal of Geophysical Research: Space Physics, 2016, 121, 7049-7066.	2.4	38
29	The Rosetta Ion and Electron Sensor (IES) measurement of the development of pickup ions from comet 67P/Churyumovâ€Gerasimenko. Geophysical Research Letters, 2015, 42, 3093-3099.	4.0	45
30	Model insights into energetic photoelectrons measured at Mars by MAVEN. Geophysical Research Letters, 2015, 42, 8894-8900.	4.0	28
31	MAVEN insights into oxygen pickup ions at Mars. Geophysical Research Letters, 2015, 42, 8870-8876.	4.0	53
32	MAVEN observations of the response of Mars to an interplanetary coronal mass ejection. Science, 2015, 350, aad0210.	12.6	166
33	Early MAVEN Deep Dip campaign reveals thermosphere and ionosphere variability. Science, 2015, 350, aad0459.	12.6	90
34	Pickup ion measurements by MAVEN: A diagnostic of photochemical oxygen escape from Mars. Geophysical Research Letters, 2014, 41, 4812-4818.	4.0	23
35	The precipitation of keV energetic oxygen ions at Mars and their effects during the comet Siding Spring approach. Geophysical Research Letters, 2014, 41, 4844-4850.	4.0	17