J-L Bertaux

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9579284/publications.pdf

Version: 2024-02-01

		15504	30922	
182	12,102	65	102	
papers	citations	h-index	g-index	
				1
198	198	198	4573	
all docs	docs citations	times ranked	citing authors	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	On the nucleus structure and activity of comet 67P/Churyumov-Gerasimenko. Science, 2015, 347, aaa1044.	12.6	366
2	Composition of comet Halley dust particles from Vega observations. Nature, 1986, 321, 280-282.	27.8	349
3	Rosina – Rosetta Orbiter Spectrometer for Ion and Neutral Analysis. Space Science Reviews, 2007, 128, 745-801.	8.1	331
4	Dust measurements in the coma of comet 67P/Churyumov-Gerasimenko inbound to the Sun. Science, 2015, 347, aaa3905.	12.6	310
5	OSIRIS – The Scientific Camera System Onboard Rosetta. Space Science Reviews, 2007, 128, 433-506.	8.1	286
6	The morphological diversity of comet 67P/Churyumov-Gerasimenko. Science, 2015, 347, aaa0440.	12.6	259
7	Discovery of an aurora on Mars. Nature, 2005, 435, 790-794.	27.8	203
8	Density and temperatures of the upper Martian atmosphere measured by stellar occultations with Mars Express SPICAM. Journal of Geophysical Research, 2009, 114, .	3.3	200
9	Shape model, reference system definition, and cartographic mapping standards for comet 67P/Churyumov-Gerasimenko – Stereo-photogrammetric analysis of Rosetta/OSIRIS image data. Astronomy and Astrophysics, 2015, 583, A33.	5.1	188
10	Spectrophotometric properties of the nucleus of comet 67P/Churyumov-Gerasimenko from the OSIRIS instrument onboard the ROSETTA spacecraft. Astronomy and Astrophysics, 2015, 583, A30.	5.1	188
11	Insolation, erosion, and morphology of comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2015, 583, A34.	5.1	173
12	Variations of sulphur dioxide at the cloud top of Venus's dynamic atmosphere. Nature Geoscience, 2013, 6, 25-28.	12.9	164
13	SPICAV on Venus Express: Three spectrometers to study the global structure and composition of the Venus atmosphere. Planetary and Space Science, 2007, 55, 1673-1700.	1.7	160
14	The primordial nucleus of comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2016, 592, A63.	5.1	159
15	Large heterogeneities in comet 67P as revealed by active pits from sinkhole collapse. Nature, 2015, 523, 63-66.	27.8	158
16	EVOLUTION OF THE DUST SIZE DISTRIBUTION OF COMET 67P/CHURYUMOV–GERASIMENKO FROM 2.2 au TO PERIHELION. Astrophysical Journal, 2016, 821, 19.	4.5	158
17	Regional surface morphology of comet 67P/Churyumov-Gerasimenko from Rosetta/OSIRIS images. Astronomy and Astrophysics, 2015, 583, A26.	5.1	153
18	Redistribution of particles across the nucleus of comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2015, 583, A17.	5.1	149

#	Article	IF	CITATIONS
19	SPICAM on Mars Express: Observing modes and overview of UV spectrometer data and scientific results. Journal of Geophysical Research, 2006, 111, .	3.3	148
20	Venus Express science planning. Planetary and Space Science, 2006, 54, 1279-1297.	1.7	142
21	Solar proton events of October–November 2003: Ozone depletion in the Northern Hemisphere polar winter as seen by GOMOS/Envisat. Geophysical Research Letters, 2004, 31, .	4.0	141
22	Two independent and primitive envelopes of the bilobate nucleus of comet 67P. Nature, 2015, 526, 402-405.	27.8	141
23	Unexpected variability of Martian hydrogen escape. Geophysical Research Letters, 2014, 41, 314-320.	4.0	137
24	Heterogeneous chemistry in the atmosphere of Mars. Nature, 2008, 454, 971-975.	27.8	130
25	Evidence of Water Vapor in Excess of Saturation in the Atmosphere of Mars. Science, 2011, 333, 1868-1871.	12.6	122
26	Global distribution of total ozone on Mars from SPICAM/MEX UV measurements. Journal of Geophysical Research, 2006, 111 , .	3.3	120
27	Annual survey of water vapor vertical distribution and water–aerosol coupling in the martian atmosphere observed by SPICAM/MEx solar occultations. Icarus, 2013, 223, 942-962.	2.5	120
28	Nightglow in the Upper Atmosphere of Mars and Implications for Atmospheric Transport. Science, 2005, 307, 566-569.	12.6	119
29	The Atmospheric Chemistry Suite (ACS) of Three Spectrometers for the ExoMars 2016 Trace Gas Orbiter. Space Science Reviews, 2018, 214, 1.	8.1	119
30	Martian dayglow as seen by the SPICAM UV spectrograph on Mars Express. Journal of Geophysical Research, 2006, 111 , .	3.3	116
31	SWAN: A study of Solar Wind Anisotropies on SOHO with Lyman alpha sky mapping. Solar Physics, 1995, 162, 403-439.	2.5	114
32	Subvisible CO2 ice clouds detected in the mesosphere of Mars. Icarus, 2006, 183, 403-410.	2.5	113
33	Seasonal mass transfer on the nucleus of comet 67P/Chuyumov–Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2017, 469, S357-S371.	4.4	111
34	Size-frequency distribution of boulders ≥7 m on comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2015, 583, A37.	5.1	108
35	The global meter-level shape model of comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2017, 607, L1.	5.1	107
36	Vertical profiling of SO2 and SO above Venus' clouds by SPICAV/SOIR solar occultations. Icarus, 2012, 217, 740-751.	2.5	103

#	Article	IF	CITATIONS
37	Global ozone monitoring by occultation of stars: an overview of GOMOS measurements on ENVISAT. Atmospheric Chemistry and Physics, 2010, 10, 12091-12148.	4.9	102
38	Are fractured cliffs the source of cometary dust jets? Insights from OSIRIS/Rosetta at 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2016, 587, A14.	5.1	102
39	The pristine interior of comet 67P revealed by the combined Aswan outburst and cliff collapse. Nature Astronomy, 2017, 1 , .	10.1	100
40	Solar infrared occultation observations by SPICAM experiment on Mars-Express: Simultaneous measurements of the vertical distributions of H2O, CO2 and aerosol. Icarus, 2009, 200, 96-117.	2.5	98
41	A rapid decrease of the hydrogen corona of Mars. Geophysical Research Letters, 2014, 41, 8013-8020.	4.0	98
42	Stellar occultations observed by SPICAM on Mars Express. Journal of Geophysical Research, 2006, 111, .	3.3	97
43	OSIRIS observations of meter-sized exposures of H ₂ O ice at the surface of 67P/Churyumov-Gerasimenko and interpretation using laboratory experiments. Astronomy and Astrophysics, 2015, 583, A25.	5.1	97
44	Rosetta's comet 67P/Churyumov-Gerasimenko sheds its dusty mantle to reveal its icy nature. Science, 2016, 354, 1566-1570.	12.6	97
45	Stellar occultations at UV wavelengths by the SPICAM instrument: Retrieval and analysis of Martian haze profiles. Journal of Geophysical Research, 2006, 111 , .	3.3	93
46	Vertical distribution of ozone on Mars as measured by SPICAM/Mars Express using stellar occultations. Journal of Geophysical Research, 2006, 111, .	3.3	90
47	Mars' water vapor mapping by the SPICAM IR spectrometer: Five martian years of observations. Icarus, 2015, 251, 50-64.	2.5	90
48	SPICAM IR acousto-optic spectrometer experiment on Mars Express. Journal of Geophysical Research, 2006, 111, .	3.3	89
49	An investigation of the SO2 content of the venusian mesosphere using SPICAV-UV in nadir mode. Icarus, 2011, 211, 58-69.	2.5	86
50	A strong seasonal dependence in the Martian hydrogen exosphere. Geophysical Research Letters, 2015, 42, 8678-8685.	4.0	86
51	Regional surface morphology of comet 67P/Churyumov-Gerasimenko from Rosetta/OSIRIS images: The southern hemisphere. Astronomy and Astrophysics, 2016, 593, A110.	5.1	86
52	Rosetta-Alice observations of exospheric hydrogen and oxygen on Mars. Icarus, 2011, 214, 394-399.	2.5	82
53	Evidence for a bimodal size distribution for the suspended aerosol particles on Mars. Icarus, 2014, 231, 239-260.	2.5	82
54	Preliminary characterization of the upper haze by SPICAV/SOIR solar occultation in UV to midâ€IR onboard Venus Express. Journal of Geophysical Research, 2009, 114, .	3.3	81

#	Article	IF	Citations
55	A layer of ozone detected in the nightside upper atmosphere of Venus. Icarus, 2011, 216, 82-85.	2.5	81
56	The rotation state of 67P/Churyumov-Gerasimenko from approach observations with the OSIRIS cameras on Rosetta. Astronomy and Astrophysics, 2014, 569, L2.	5.1	81
57	Alice: The rosetta Ultraviolet Imaging Spectrograph. Space Science Reviews, 2007, 128, 507-527.	8.1	79
58	Measurements of the near-nucleus coma of comet 67P/Churyumov-Gerasimenko with the Alice far-ultraviolet spectrograph on Rosetta. Astronomy and Astrophysics, 2015, 583, A8.	5.1	77
59	Mars water vapor abundance from SPICAM IR spectrometer: Seasonal and geographic distributions. Journal of Geophysical Research, 2006, 111, .	3.3	76
60	Martian oxygen density at the exobase deduced from O I 130.4 \hat{a} \in nm observations by Spectroscopy for the Investigation of the Characteristics of the Atmosphere of Mars on Mars Express. Journal of Geophysical Research, 2009, 114, .	3.3	71
61	Retrieval of atmospheric parameters from GOMOS data. Atmospheric Chemistry and Physics, 2010, 10, 11881-11903.	4.9	71
62	Mapping the mesospheric CO2 clouds on Mars: MEx/OMEGA and MEx/HRSC observations and challenges for atmospheric models. Icarus, 2010, 209, 452-469.	2.5	71
63	Fractures on comet 67P/Churyumovâ€Gerasimenko observed by Rosetta/OSIRIS. Geophysical Research Letters, 2015, 42, 5170-5178.	4.0	71
64	Observations of aurorae by SPICAM ultraviolet spectrograph on board Mars Express: Simultaneous ASPERAâ \in 3 and MARSIS measurements. Journal of Geophysical Research, 2008, 113, .	3.3	70
65	Scientific assessment of the quality of OSIRIS images. Astronomy and Astrophysics, 2015, 583, A46.	5.1	67
66	Detection of exposed H ₂ O ice on the nucleus of comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2016, 595, A102.	5.1	67
67	Variations of water vapor and cloud top altitude in the Venus' mesosphere from SPICAV/VEx observations. Icarus, 2016, 275, 143-162.	2.5	67
68	Large increase of NO2in the north polar mesosphere in January–February 2004: Evidence of a dynamical origin from GOMOS/ENVISAT and SABER/TIMED data. Geophysical Research Letters, 2007, 34, .	4.0	66
69	Interplanetary Lyman \hat{l}_{\pm} line profiles derived from SWAN/SOHO hydrogen cell measurements: Full-sky Velocity Field. Journal of Geophysical Research, 1999, 104, 12585-12603.	3.3	65
70	A complete climatology of the aerosol vertical distribution on Mars from MEx/SPICAM UV solar occultations. Icarus, 2013, 223, 892-941.	2.5	64
71	SPICAM on Mars Express: A 10 year in-depth survey of the Martian atmosphere. Icarus, 2017, 297, 195-216.	2.5	64
72	Surface changes on comet 67P/Churyumov-Gerasimenko suggest a more active past. Science, 2017, 355, 1392-1395.	12.6	63

#	Article	IF	CITATIONS
73	Temporal morphological changes in the Imhotep region of comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2015, 583, A36.	5.1	60
74	Influence of Venus topography on the zonal wind and UV albedo at cloud top level: The role of stationary gravity waves. Journal of Geophysical Research E: Planets, 2016, 121, 1087-1101.	3.6	60
75	Distribution of the ultraviolet nitric oxide Martian night airglow: Observations from Mars Express and comparisons with a oneâ€dimensional model. Journal of Geophysical Research, 2008, 113, .	3.3	59
76	Geomorphology of the Imhotep region on comet 67P/Churyumov-Gerasimenko from OSIRIS observations. Astronomy and Astrophysics, 2015, 583, A35.	5.1	59
77	Origins of the Martian aurora observed by Spectroscopy for Investigation of Characteristics of the Atmosphere of Mars (SPICAM) on board Mars Express. Journal of Geophysical Research, 2006, 111, .	3.3	58
78	Observation of O21.27 \hat{l}_4 m dayglow by SPICAM IR: Seasonal distribution for the first Martian year of Mars Express. Journal of Geophysical Research, 2006, 111, .	3.3	57
79	Nighttime ozone profiles in the stratosphere and mesosphere by the Global Ozone Monitoring by Occultation of Stars on Envisat. Journal of Geophysical Research, 2006, 111 , .	3.3	55
80	GOMOS O ₃ , NO ₂ , and NO ₃ observations in 2002–2008. Atmospheric Chemistry and Physics, 2010, 10, 7723-7738.	4.9	55
81	Sunset jets observed on comet 67P/Churyumov-Gerasimenko sustained by subsurface thermal lag. Astronomy and Astrophysics, 2016, 586, A7.	5.1	55
82	Aswan site on comet 67P/Churyumov-Gerasimenko: Morphology, boulder evolution, and spectrophotometry. Astronomy and Astrophysics, 2016, 592, A69.	5.1	53
83	Aerosol properties in the upper haze of Venus from SPICAV IR data. Icarus, 2016, 277, 154-170.	2.5	53
84	Acceleration of individual, decimetre-sized aggregates in the lower coma of comet 67P/Churyumov–Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2016, 462, S78-S88.	4.4	52
85	SPICAM observations and modeling of Mars aurorae. Icarus, 2016, 264, 398-406.	2.5	52
86	On Martian nitrogen dayglow emission observed by SPICAM UV spectrograph/Mars Express. Geophysical Research Letters, 2007, 34, .	4.0	51
87	Interpretation of Ogo 5 Lyman alpha measurements in the upper geocorona. Journal of Geophysical Research, 1973, 78, 80-91.	3.3	50
88	Simulating the density and thermal structure of the middle atmosphere (â ¹ /480–130km) of Mars using the MGCM–MTGCM: A comparison with MEX/SPICAM observations. Icarus, 2010, 206, 5-17.	2.5	50
89	Climatology of SO2 and UV absorber at Venus' cloud top from SPICAV-UV nadir dataset. Icarus, 2020, 335, 113368.	2.5	50
90	Dayglow on Mars: Kinetic modelling with SPICAM UV limb data. Planetary and Space Science, 2009, 57, 1008-1021.	1.7	47

#	Article	IF	CITATIONS
91	Hydrogen density in the dayside venusian exosphere derived from Lyman-α observations by SPICAV on Venus Express. Icarus, 2012, 217, 767-778.	2.5	47
92	The O2 nightglow in the martian atmosphere by SPICAM onboard of Mars-Express. Icarus, 2012, 219, 596-608.	2.5	45
93	GOMOS data characterisation and error estimation. Atmospheric Chemistry and Physics, 2010, 10, 9505-9519.	4.9	43
94	Dust mass distribution around comet 67P/Churyumov–Gerasimenko determined via parallax measurements using Rosetta's OSIRIS cameras. Monthly Notices of the Royal Astronomical Society, 2017, 469, S276-S284.	4.4	43
95	SWAN/SOHO Lymanâ€ <i>α</i> Mapping: The Hydrogen Geocorona Extends Well Beyond the Moon. Journal of Geophysical Research: Space Physics, 2019, 124, 861-885.	2.4	43
96	Variegation of comet 67P/Churyumov-Gerasimenko in regions showing activity. Astronomy and Astrophysics, 2016, 586, A80.	5.1	43
97	Observed variations of the exospheric hydrogen density with the exospheric temperature. Journal of Geophysical Research, 1975, 80, 639-642.	3.3	42
98	The Interstellar H Flow: Updated Analysis of SOHOâ^•SWAN Data. AIP Conference Proceedings, 2010, , .	0.4	42
99	Geomorphology and spectrophotometry of Philae's landing site on comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2015, 583, A41.	5.1	41
100	The pebbles/boulders size distributions on Sais: Rosetta's final landing site on comet 67P/Churyumov–Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2017, 469, S636-S645.	4.4	40
101	Large-scale dust jets in the coma of 67P/Churyumov-Gerasimenko as seen by the OSIRIS instrument onboard Rosetta. Astronomy and Astrophysics, 2015, 583, A9.	5.1	39
102	Thermal modelling of water activity on comet 67P/Churyumov-Gerasimenko with global dust mantle and plural dust-to-ice ratio. Monthly Notices of the Royal Astronomical Society, 2017, 469, S295-S311.	4.4	39
103	First detection of O ₂ 1.27 <i>\hat{l}4</i> m nightglow emission at Mars with OMEGA/MEX and comparison with general circulation model predictions. Journal of Geophysical Research, 2012, 117, .	3.3	37
104	New nitric oxide (NO) nightglow measurements with SPICAM/MEx as a tracer of Mars upper atmosphere circulation and comparison with LMDâ€MGCM model prediction: Evidence for asymmetric hemispheres. Journal of Geophysical Research E: Planets, 2013, 118, 2172-2179.	3.6	37
105	Concurrent observations of ultraviolet aurora and energetic electron precipitation with Mars Express. Journal of Geophysical Research: Space Physics, 2015, 120, 6749-6765.	2.4	37
106	Thermal structure of Venus nightside upper atmosphere measured by stellar occultations with SPICAV/Venus Express. Planetary and Space Science, 2015, 113-114, 321-335.	1.7	37
107	Altitude profiles of O2 on Mars from SPICAM stellar occultations. Icarus, 2015, 252, 154-160.	2.5	37
108	A global climatology of the mesospheric sodium layer from GOMOS data during the 2002–2008 period. Atmospheric Chemistry and Physics, 2010, 10, 9225-9236.	4.9	35

#	Article	IF	Citations
109	Observations of thermal tides in the middle atmosphere of Mars by the SPICAM instrument. Journal of Geophysical Research, 2011, 116, .	3.3	35
110	Gas outflow and dust transport of comet 67P/Churyumov–Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2016, 462, S533-S546.	4.4	34
111	Influence of scintillation on quality of ozone monitoring by GOMOS. Atmospheric Chemistry and Physics, 2009, 9, 9197-9207.	4.9	33
112	Morphology and dynamics of the jets of comet 67P/Churyumov-Gerasimenko: Early-phase development. Astronomy and Astrophysics, 2015, 583, A11.	5.1	33
113	The use of the 1.27 µm O ₂ absorption band for greenhouse gas monitoring from space and application to MicroCarb. Atmospheric Measurement Techniques, 2020, 13, 3329-3374.	3.1	33
114	Night side distribution of SO2 content in Venus' upper mesosphere. Icarus, 2017, 294, 58-71.	2.5	32
115	Multiâ€Annual Monitoring of the Water Vapor Vertical Distribution on Mars by SPICAM on Mars Express. Journal of Geophysical Research E: Planets, 2021, 126, .	3.6	32
116	Temperature measurement of interplanetary–interstellar hydrogen. Nature, 1977, 270, 156-158.	27.8	31
117	Optical extinction by upper tropospheric/stratospheric aerosols and clouds: GOMOS observations for the period 2002–2008. Atmospheric Chemistry and Physics, 2010, 10, 7997-8009.	4.9	31
118	O2(a1î"g) dayglow limb observations on Mars by SPICAM IR on Mars-Express and connection to water vapor distribution. Icarus, 2014, 239, 131-140.	2.5	31
119	THE NATURE AND FREQUENCY OF THE GAS OUTBURSTS IN COMET 67P/CHURYUMOV–GERASIMENKO OBSERVED BY THE ALICE FAR-ULTRAVIOLET SPECTROGRAPH ON ROSETTA. Astrophysical Journal Letters, 2016, 825, L8.	8.3	31
120	Search for horizontal and vertical variations of CO in the day and night side lower mesosphere of Venus from CSHELL/IRTF <mml:math altimg="si0010.gif" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mn>4.53</mml:mn><mml:mspace width="0.25em"></mml:mspace><mml:mimml< td=""><td>1.7</td><td>30</td></mml:mimml<></mml:math>	1.7	30
121	The highly active Anhur–Bes regions in the 67P/Churyumov–Gerasimenko comet: results from OSIRIS/ROSETTA observations. Monthly Notices of the Royal Astronomical Society, 2017, 469, S93-S107.	4.4	30
122	Ten years of Martian nitric oxide nightglow observations. Geophysical Research Letters, 2015, 42, 720-725.	4.0	29
123	Mars thermospheric scale height: CO Cameron and CO2+ dayglow observations from Mars Express. Icarus, 2015, 245, 295-305.	2.5	29
124	Geologic mapping of the Comet 67P/Churyumov–Gerasimenko's Northern hemisphere. Monthly Notices of the Royal Astronomical Society, 2016, 462, S352-S367.	4.4	27
125	The southern hemisphere of 67P/Churyumov-Gerasimenko: Analysis of the preperihelion size-frequency distribution of boulders ≥7 m. Astronomy and Astrophysics, 2016, 592, L2.	5.1	27
126	Analysis and modeling of remote observations of the martian hydrogen exosphere. Icarus, 2017, 281, 264-280.	2.5	27

#	Article	lF	CITATIONS
127	Global measurement of the mesospheric sodium layer by the star occultation instrument GOMOS. Geophysical Research Letters, 2004, 31, .	4.0	26
128	Characterization of the Abydos region through OSIRIS high-resolution images in support of CIVA measurements. Astronomy and Astrophysics, 2016, 585, L1.	5.1	26
129	Voyager Measurements of Hydrogen Lyman-α Diffuse Emission from the Milky Way. Science, 2011, 334, 1665-1669.	12.6	24
130	Long-term survival of surface water ice on comet 67P. Monthly Notices of the Royal Astronomical Society, 2017, 469, S582-S597.	4.4	24
131	Mars ultraviolet dayglow variability: SPICAM observations and comparison with airglow model. Journal of Geophysical Research, 2010, 115, .	3.3	23
132	Orbital elements of the material surrounding comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2015, 583, A16.	5.1	23
133	Geomorphological mapping of comet 67P/Churyumov–Gerasimenko's Southern hemisphere. Monthly Notices of the Royal Astronomical Society, 2016, 462, S573-S592.	4.4	23
134	Seasonal Changes in Hydrogen Escape From Mars Through Analysis of HST Observations of the Martian Exosphere Near Perihelion. Journal of Geophysical Research: Space Physics, 2017, 122, 11,756.	2.4	22
135	A three-dimensional modelling of the layered structure of comet 67P/Churyumov-Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2017, 469, S741-S754.	4.4	22
136	NO emissions as observed by SPICAV during stellar occultations. Planetary and Space Science, 2010, 58, 1314-1326.	1.7	21
137	On deviations from free-radial outflow in the inner coma of comet 67P/Churyumov–Gerasimenko. lcarus, 2018, 311, 1-22.	2.5	21
138	Retrievals from GOMOS stellar occultation measurements using characterization of modeling errors. Atmospheric Measurement Techniques, 2010, 3, 1019-1027.	3.1	21
139	The Helium Focusing Cone of the Local Interstellar Medium Close to the Sun. Astrophysical Journal, 2002, 568, 385-395.	4.5	20
140	The phase function and density of the dust observed at comet 67P/Churyumov–Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2018, 476, 2835-2839.	4.4	20
141	Voyager 1/UVS Lyman \hat{l}_{\pm} glow data from 1993 to 2003: Hydrogen distribution in the upwind outer heliosphere. Journal of Geophysical Research, 2003, 108, .	3.3	19
142	Interplanetary Lymanî±line profiles: variations with solar activity cycle. Astronomy and Astrophysics, 2006, 455, 1135-1142.	5.1	19
143	Discovery of cloud top ozone on Venus. Icarus, 2019, 319, 491-498.	2.5	19
144	Relationship Between the Ozone and Water Vapor Columns on Mars as Observed by SPICAM and Calculated by a Global Climate Model. Journal of Geophysical Research E: Planets, 2021, 126, e2021JE006838.	3.6	19

#	Article	IF	CITATIONS
145	First climatology of polar mesospheric clouds from GOMOS/ENVISAT stellar occultation instrument. Atmospheric Chemistry and Physics, 2010, 10, 2723-2735.	4.9	18
146	A global OCIO stratospheric layer discovered in GOMOS stellar occultation measurements. Geophysical Research Letters, 2006, 33, .	4.0	17
147	IUVS echelleâ€mode observations of interplanetary hydrogen: Standard for calibration and reference for cavity variations between Earth and Mars during MAVEN cruise. Journal of Geophysical Research: Space Physics, 2017, 122, 2089-2105.	2.4	16
148	Study of the hydrogen escape rate at Mars during martian years 28 and 29 from comparisons between SPICAM/Mars express observations and GCM-LMD simulations. Icarus, 2021, 353, 113498.	2.5	16
149	Simultaneous measurements of OCIO, NO ₂ and O ₃ in the Arctic polar vortex by the GOMOS instrument. Atmospheric Chemistry and Physics, 2009, 9, 7857-7866.	4.9	15
150	The Agilkia boulders/pebbles size–frequency distributions: OSIRIS and ROLIS joint observations of 67P surface. Monthly Notices of the Royal Astronomical Society, 2016, 462, S242-S252.	4.4	15
151	Ultraviolet Observations of Coronal Mass Ejection Impact on Comet 67P/Churyumov–Gerasimenko by Rosetta Alice. Astronomical Journal, 2018, 156, 16.	4.7	15
152	Surface evolution of the Anhur region on comet 67P/Churyumov-Gerasimenko from high-resolution OSIRIS images. Astronomy and Astrophysics, 2019, 630, A13.	5.1	15
153	Characterization of the stray light in a space borne atmospheric AOTF spectrometer. Optics Express, 2013, 21, 18354.	3.4	13
154	Long-term monitoring of comet 67P/Churyumov–Gerasimenko's jets with OSIRIS onboard Rosetta. Monthly Notices of the Royal Astronomical Society, 2017, 469, S380-S385.	4.4	13
155	The SPARC water vapour assessment II: profile-to-profile comparisons of stratospheric and lower mesospheric water vapour data sets obtained from satellites. Atmospheric Measurement Techniques, 2019, 12, 2693-2732.	3.1	13
156	ULTRAVIOLET GLOW FROM THE HYDROGEN WALL. Astrophysical Journal, 2010, 711, 1257-1262.	4.5	12
157	Validation of GOMOS ozone precision estimates in the stratosphere. Atmospheric Measurement Techniques, 2014, 7, 2147-2158.	3.1	12
158	Rosetta Alice/VIRTIS observations of the water vapour UV electroglow emissions around comet 67P/Churyumov–Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2017, 469, S416-S426.	4.4	12
159	Characterization of dust aggregates in the vicinity of the Rosetta spacecraft. Monthly Notices of the Royal Astronomical Society, 2017, 469, S312-S320.	4.4	12
160	Climatology and comparison of ozone from ENVISAT/GOMOS and SHADOZ/balloon-sonde observations in the southern tropics. Atmospheric Chemistry and Physics, 2010, 10, 8025-8035.	4.9	11
161	Improved GOMOS/Envisat ozone retrievals in the upper troposphere and the lower stratosphere. Atmospheric Measurement Techniques, 2017, 10, 231-246.	3.1	10
162	Multidisciplinary analysis of the Hapi region located on Comet 67P/Churyumov–Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2019, 485, 2139-2154.	4.4	9

#	Article	IF	CITATIONS
163	Seasonal variations in source regions of the dust jets on comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2019, 630, A17.	5.1	9
164	Characterization of OSIRIS NAC filters for the interpretation of multispectral data of comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2015, 583, A45.	5.1	8
165	Distance determination method of dust particles using Rosetta OSIRIS NAC and WAC data. Planetary and Space Science, 2017, 143, 256-264.	1.7	8
166	Diffuse interstellar bands carriers and cometary organic materiala~ Monthly Notices of the Royal Astronomical Society, 2017, 469, S646-S660.	4.4	8
167	Geomorphological and spectrophotometric analysis of Seth's circular niches on comet 67P/Churyumov–Gerasimenko using OSIRIS images. Monthly Notices of the Royal Astronomical Society, 2017, 469, S238-S251.	4.4	8
168	Solarâ€Related Variations of the Cloud Top Circulation Above Aphrodite Terra From VMC/Venus Express Wind Fields. Journal of Geophysical Research E: Planets, 2019, 124, 1864-1879.	3.6	8
169	Exploration of Mars in SPICAM-IR experiment onboard the Mars-Express spacecraft: 1. Acousto-optic spectrometer SPICAM-IR. Cosmic Research, 2006, 44, 278-293.	0.6	7
170	The big lobe of 67P/Churyumov–Gerasimenko comet: morphological and spectrophotometric evidences of layering as from OSIRIS data. Monthly Notices of the Royal Astronomical Society, 2018, 479, 1555-1568.	4.4	7
171	Galactic cosmic rays measured by UVS on Voyager 1 and the end of the modulation. Astronomy and Astrophysics, 2014, 563, A108.	5.1	6
172	The backscattering ratio of comet 67P/Churyumov-Gerasimenko dust coma as seen by OSIRIS onboard Rosetta. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	6
173	A new MesosphEO data set of temperature profiles from 35 to 85 km using Rayleigh scattering at limb from GOMOS/ENVISAT daytime observations. Atmospheric Measurement Techniques, 2019, 12, 749-761.	3.1	6
174	The Spatial and Temporal Distribution of Nighttime Ozone and Sulfur Dioxide in the Venus Mesosphere as Deduced From SPICAV UV Stellar Occultations. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006625.	3.6	6
175	Comet C/2017 S3 (PanSTARRS): Outbursts and Disintegration. Astrophysical Journal Letters, 2019, 884, L39.	8.3	4
176	Quantitative analysis of isolated boulder fields on comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2019, 630, A15.	5.1	4
177	Improved calibrations of the stellar occultation data accumulated by the SPICAV UV onboard Venus Express. Planetary and Space Science, 2020, 184, 104868.	1.7	4
178	Mass distribution of exoplanets considering some observation selection effects in the transit detection technique. Icarus, 2020, 346, 113773.	2.5	4
179	A numerical inversion of <i>m</i> sin <i>i</i> exoplanet distribution: the sub-Saturn desert is more depleted than observed and hint of a Uranus mass gap. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	4
180	OCIO slant column densities derived from GOMOS averaged transmittance measurements. Atmospheric Measurement Techniques, 2013, 6, 2953-2964.	3.1	2

J-L BERTAUX

#	Article	IF	CITATION
181	Analysis of Hybrid Gas–Dust Outbursts Observed at 67P/Churyumov–Gerasimenko. Astronomical Journal, 2021, 162, 4.	4.7	2
182	Spatial Distribution of Ultraviolet Emission from Cometary Activity at 67P/Churyumov-Gerasimenko. Astronomical Journal, 2021, 162, 5.	4.7	0