
M Carmen Blanco-LÃ³pez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9579129/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nanozyme-Based Lateral Flow Immunoassay (LFIA) for Extracellular Vesicle Detection. Biosensors, 2022, 12, 490.	4.7	3
2	Electrodecoration and Characterization of Superparamagnetic Iron Oxide Nanoparticles with Bioactive Synergistic Nanocopper: Magnetic Hyperthermia-Induced Ionic Release for Anti-Biofilm Action. Antibiotics, 2021, 10, 119.	3.7	8
3	Biological and Medical Applications of Magnetic Nanoparticles. , 2021, , 771-804.		0
4	Microemulsion Synthesis of Superparamagnetic Nanoparticles for Bioapplications. International Journal of Molecular Sciences, 2021, 22, 427.	4.1	54
5	Nano-Encapsulation of Mithramycin in Transfersomes and Polymeric Micelles for the Treatment of Sarcomas. Journal of Clinical Medicine, 2021, 10, 1358.	2.4	8
6	Synthesis of Starch Nanoparticles and Their Applications for Bioactive Compound Encapsulation. Applied Sciences (Switzerland), 2021, 11, 4547.	2.5	26
7	Magnetic Lateral Flow Immunoassay for Small Extracellular Vesicles Quantification: Application to Colorectal Cancer Biomarker Detection. Sensors, 2021, 21, 3756.	3.8	12
8	Lipid–Polymer Hybrids Encapsulating Iron-Oxide Nanoparticles as a Label for Lateral Flow Immunoassays. Biosensors, 2021, 11, 218.	4.7	3
9	Formulation and Characterization of Taxifolinâ€Loaded Lipid Nanovesicles (Liposomes, Niosomes, and) Tj ETQq1 1 122, 1900105.	0.784314 1.5	4 rgBT /Ove 36
10	Bienzymatic amperometric glucose biosensor. , 2020, , 173-181.		1
11	Effect of drug molecular weight on niosomes size and encapsulation efficiency. Colloids and Surfaces B: Biointerfaces, 2020, 186, 110711.	5.0	58
12	Vitamin D3 Loaded Niosomes and Transfersomes Produced by Ethanol Injection Method: Identification of the Critical Preparation Step for Size Control. Foods, 2020, 9, 1367.	4.3	17
13	Improved magnetic lateral flow assays with optimized nanotags for point-of-use inductive biosensing. Analyst, The, 2020, 145, 5905-5914.	3.5	14
14	Cu Nanoparticle-Loaded Nanovesicles with Antibiofilm Properties. Part I: Synthesis of New Hybrid Nanostructures. Nanomaterials, 2020, 10, 1542.	4.1	9
15	Carbon-Coated Superparamagnetic Nanoflowers for Biosensors Based on Lateral Flow Immunoassays. Biosensors, 2020, 10, 80.	4.7	22
16	Cholesterol free niosome production by microfluidics: Comparative with other conventional methods. Chemical Engineering Research and Design, 2020, 162, 162-171.	5.6	13
17	Synthesis, Characterization and Evaluation of the Antibiofouling Potential of Some Metal and Metal Oxide Nanoparticles. Applied Sciences (Switzerland), 2020, 10, 5864.	2.5	1
18	Paper-Based Working Electrodes Coated with Mercury or Bismuth Films for Heavy Metals Determination. Biosensors, 2020, 10, 52.	4.7	27

#	Article	IF	CITATIONS
19	Magnetic Lateral Flow Immunoassays. Diagnostics, 2020, 10, 288.	2.6	62
20	Vesicles as antibiotic carrier: State of art. International Journal of Pharmaceutics, 2020, 585, 119478.	5.2	17
21	Extracellular Vesicles: Current Analytical Techniques for Detection and Quantification. Biomolecules, 2020, 10, 824.	4.0	45
22	Paper-based electrodes modified with cobalt phthalocyanine colloid for the determination of hydrogen peroxide and glucose. Analyst, The, 2020, 145, 2716-2724.	3.5	18
23	Selected Tetraspanins Functionalized Niosomes as Potential Standards for Exosome Immunoassays. Nanomaterials, 2020, 10, 971.	4.1	8
24	Magnetic immunochromatographic test for histamine detection in wine. Analytical and Bioanalytical Chemistry, 2019, 411, 6615-6624.	3.7	41
25	Continuous flow production of size-controllable niosomes using a thermostatic microreactor. Colloids and Surfaces B: Biointerfaces, 2019, 182, 110378.	5.0	8
26	Extracellular Vesicles: From Biology to Biomedical Applications. Bioengineering, 2019, 6, 79.	3.5	1
27	Micropipette Tip-Based Immunoassay with Electrochemical Detection of Antitissue Transglutaminase to Diagnose Celiac Disease Using Staples and a Paper-Based Platform. ACS Sensors, 2019, 4, 2679-2687.	7.8	13
28	Characterization of Plasma-Derived Extracellular Vesicles Isolated by Different Methods: A Comparison Study. Bioengineering, 2019, 6, 8.	3.5	94
29	Carlos D. Garcia, Agustin G. Crevillén, Alberto Escarpa (Eds): Carbon-based nanomaterials in analytical chemistry. Analytical and Bioanalytical Chemistry, 2019, 411, 3219-3220.	3.7	0
30	Preconcentration and sensitive determination of the anti-inflammatory drug diclofenac on a paper-based electroanalytical platform. Analytica Chimica Acta, 2019, 1074, 89-97.	5.4	43
31	Synthesis of Superparamagnetic Iron Oxide Nanoparticles: SWOT Analysis Towards Their Conjugation to Biomolecules for Molecular Recognition Applications. Journal of Nanoscience and Nanotechnology, 2019, 19, 4839-4856.	0.9	22
32	Paper-based electrochemical transducer modified with nanomaterials for mercury determination in environmental waters. Sensors and Actuators B: Chemical, 2019, 290, 87-92.	7.8	47
33	Nanoparticles for bioanalysis. Analytical and Bioanalytical Chemistry, 2019, 411, 1789-1790.	3.7	8
34	Optimization and characterization of nanostructured paper-based electrodes. Electrochimica Acta, 2018, 265, 717-725.	5.2	9
35	Therapeutic biomaterials based on extracellular vesicles: classification of bioâ€engineering and mimetic preparation routes. Journal of Extracellular Vesicles, 2018, 7, 1422676.	12.2	128
36	Circulating extracellular vesicles as potential biomarkers in chronic fatigue syndrome/myalgic encephalomyelitis: an exploratory pilot study. Journal of Extracellular Vesicles, 2018, 7, 1453730.	12.2	26

#	Article	IF	CITATIONS
37	Fully Artificial Exosomes: Towards New Theranostic Biomaterials. Trends in Biotechnology, 2018, 36, 10-14.	9.3	71
38	Immunoassays for scarce tumour-antigens in exosomes: detection of the human NKG2D-Ligand, MICA, in tetraspanin-containing nanovesicles from melanoma. Journal of Nanobiotechnology, 2018, 16, 47.	9.1	60
39	In situ gold-nanoparticle electrogeneration on gold films deposited on paper for non-enzymatic electrochemical determination of glucose. Talanta, 2018, 178, 160-165.	5.5	29
40	Integration of gold-sputtered electrofluidic paper on wire-included analytical platforms for glucose biosensing. Biosensors and Bioelectronics, 2017, 91, 824-832.	10.1	32
41	Scanning Magneto-Inductive Sensor for Quantitative Assay of Prostate-Specific Antigen. IEEE Magnetics Letters, 2017, 8, 1-5.	1.1	16
42	Point-of-need simultaneous electrochemical detection of lead and cadmium using low-cost stencil-printed transparency electrodes. Analytica Chimica Acta, 2017, 981, 24-33.	5.4	81
43	Electrogeneration of Gold Nanoparticles on Porous-Carbon Paper-Based Electrodes and Application to Inorganic Arsenic Analysis in White Wines by Chronoamperometric Stripping. Analytical Chemistry, 2017, 89, 6415-6423.	6.5	47
44	Au@Ag SERRS tags coupled to a lateral flow immunoassay for the sensitive detection of pneumolysin. Nanoscale, 2017, 9, 2051-2058.	5.6	91
45	Gold Nanostructuration in Paper-based Electrodes. Procedia Technology, 2017, 27, 133-134.	1.1	2
46	Integrated Electrophoresis Separation and Electrochemical Detection in a Paper-based Device. Procedia Technology, 2017, 27, 21-22.	1.1	6
47	Point-of-Use Simultaneous Electrochemical Detection of Lead and Cadmium Using Low-cost Screen-printed Transparency Electrodes. Procedia Technology, 2017, 27, 135-136.	1.1	1
48	Point-of-care detection of extracellular vesicles: Sensitivity optimization and multiple-target detection. Biosensors and Bioelectronics, 2017, 87, 38-45.	10.1	78
49	High frequency lateral flow affinity assay using superparamagnetic nanoparticles. Journal of Magnetism and Magnetic Materials, 2017, 423, 436-440.	2.3	12
50	Development of a rapid lateral flow immunoassay test for detection of exosomes previously enriched from cell culture medium and body fluids. Journal of Extracellular Vesicles, 2016, 5, 31803.	12.2	114
51	Using Factorial Experimental Design To Prepare Size-Tuned Nanovesicles. Industrial & Engineering Chemistry Research, 2016, 55, 9164-9175.	3.7	20
52	Silver and gold enhancement methods for lateral flow immunoassays. Talanta, 2016, 148, 272-278.	5.5	115
53	Artificial enzyme-based catalytic sensor for the electrochemical detection of 5-hydroxyindole-3-acetic acid tumor marker in urine. Sensors and Actuators B: Chemical, 2015, 220, 688-694.	7.8	29
54	Artificial enzyme with magnetic properties and peroxidase activity on indoleamine metabolite tumor marker. Polymer, 2014, 55, 1113-1119.	3.8	20

#	Article	IF	CITATIONS
55	Molecularly Imprinted Electrochemical Sensors. , 2012, , 1-34.		18
56	Hemo-acrylic polymers as catalyst for the oxidative dehalogenation of 2,4,6-trichlorophenol. Chloroperoxidase's mimic imprinting effects. Journal of Molecular Catalysis A, 2012, 353-354, 117-121.	4.8	8
57	New materials for analytical biomimetic assays based on affinity and catalytic receptors prepared by molecular imprinting. TrAC - Trends in Analytical Chemistry, 2012, 33, 68-80.	11.4	77
58	Preparation and Characterization of a Molecularly Imprinted Microgel for Electrochemical Sensing of 2,4,6â€Trichlorophenol. Electroanalysis, 2011, 23, 201-208.	2.9	33
59	Molecularly imprinted catalytic polymers with biomimetic chloroperoxidase activity. Polymer, 2011, 52, 2468-2473.	3.8	38
60	Kinetic study of the oxidative dehalogenation of 2,4,6-trichlorophenol catalyzed by chloroperoxidase. Journal of Molecular Catalysis B: Enzymatic, 2010, 66, 332-336.	1.8	14
61	Heterogeneous catalytic 2,4,6-trichlorophenol degradation at hemin–acrylic copolymer. Applied Catalysis B: Environmental, 2010, 96, 51-56.	20.2	28
62	Chloroperoxidase Modified Electrode for Amperometric Determination of 2,4,6â€īrichlorophenol. Electroanalysis, 2009, 21, 1348-1353.	2.9	27
63	Homemade Bienzymatic-Amperometric Biosensor for Beverages Analysis. Journal of Chemical Education, 2007, 84, 677.	2.3	7
64	Electrochemical Behavior of Catecholamines and Related Compounds at In Situ Surfactant Modified Carbon Paste Electrodes. Electroanalysis, 2007, 19, 207-213.	2.9	35
65	Determination of Diclofenac in Urine Samples by Molecularly-Imprinted Solid-Phase Extraction and Adsorptive Differential Pulse Voltammetry. Electroanalysis, 2007, 19, 1555-1561.	2.9	28
66	Computational predictions and experimental affinity distributions for a homovanillic acid molecularly imprinted polymer. Biosensors and Bioelectronics, 2006, 22, 364-371.	10.1	74
67	Flufenamic Acid Determination in Human Serum by Adsorptive Voltammetry with In Situ Surfactant Modified Carbon Paste Electrodes. Electroanalysis, 2005, 17, 1555-1562.	2.9	19
68	Electrochemical capacitor performance of mesoporous carbons obtained by templating technique. Carbon, 2005, 43, 866-870.	10.3	95
69	Computational Approach to the Rational Design of Molecularly Imprinted Polymers for Voltammetric Sensing of Homovanillic Acid. Analytical Chemistry, 2005, 77, 6741-6746.	6.5	83
70	Voltammetry of Diclofenac at Graphite, Carbon Composites, and Molecularly Imprinted Polymerâ€Composite Electrodes. Analytical Letters, 2004, 37, 915-927.	1.8	27
71	Electrochemical sensing with electrodes modified with molecularly imprinted polymer films. Analytical and Bioanalytical Chemistry, 2004, 378, 1922-1928.	3.7	121
72	Electrochemical sensors based on molecularly imprinted polymers. TrAC - Trends in Analytical Chemistry, 2004, 23, 36-48.	11.4	336

M CARMEN BLANCO-LÃ³pez

#	Article	IF	CITATIONS
73	Adsorptive Stripping Voltammetry of Rifamycins at Unmodified and Surfactant-Modified Carbon Paste Electrodes. Electroanalysis, 2004, 16, 1660-1666.	2.9	18
74	Voltammetric response of diclofenac-molecularly imprinted film modified carbon electrodes. Analytical and Bioanalytical Chemistry, 2003, 377, 257-261.	3.7	68
75	Voltammetric sensor for vanillylmandelic acid based on molecularly imprinted polymer-modified electrodes. Biosensors and Bioelectronics, 2003, 18, 353-362.	10.1	103
76	Composition of gases released during olive stones pyrolysis. Journal of Analytical and Applied Pyrolysis, 2002, 65, 313-322.	5.5	122
77	Determination of phosphorus in raw materials for ceramics: comparison between X-ray fluorescence spectrometry and inductively coupled plasma-atomic emission spectrometry. Analytica Chimica Acta, 2001, 432, 157-163.	5.4	21
78	Effect of some precursor characteristics on the porous texture of activated carbon fibres prepared from Nomex aramid fibres. Microporous and Mesoporous Materials, 2000, 41, 319-321.	4.4	18
79	Microporous texture of activated carbon fibres prepared from Nomex aramid fibres. Microporous and Mesoporous Materials, 2000, 34, 171-179.	4.4	51
80	The isoelectric point of BaTiO3. Journal of the European Ceramic Society, 2000, 20, 107-118.	5.7	51
81	Polymeric stabilisation of aqueous suspensions of barium titanate. Part II: Effect of polyelectrolyte concentration. Journal of the European Ceramic Society, 2000, 20, 1587-1594.	5.7	28
82	Polymeric stabilisation of aqueous suspensions of barium titanate. Part I: Effect of pH. Journal of the European Ceramic Society, 2000, 20, 1579-1586.	5.7	40
83	Characterization of Barium Titanate Powders: Barium Carbonate Identification. Journal of the American Ceramic Society, 1999, 82, 1777-1786.	3.8	173
84	Interaction of barium titanate powders with an aqueous suspending medium. Journal of the European Ceramic Society, 1998, 18, 2183-2192.	5.7	32
85	The properties of aqueous phase suspensions of barium titanate. Journal of the European Ceramic Society, 1997, 17, 281-287.	5.7	91