
Jian-Hua Tao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9579030/publications.pdf Version: 2024-02-01

ΙιαΝι-Ηιία Τλο

#	Article	IF	CITATIONS
1	Multimodal Spatiotemporal Representation for Automatic Depression Level Detection. IEEE Transactions on Affective Computing, 2023, 14, 294-307.	8.3	34
2	SMIN: Semi-Supervised Multi-Modal Interaction Network for Conversational Emotion Recognition. IEEE Transactions on Affective Computing, 2023, 14, 2415-2429.	8.3	13
3	Emotional Conversation Generation Orientated Syntactically Constrained Bidirectional-Asynchronous Framework. IEEE Transactions on Affective Computing, 2022, 13, 187-198.	8.3	3
4	Tucker decomposition-based temporal knowledge graph completion. Knowledge-Based Systems, 2022, 238, 107841.	7.1	35
5	Integrating Knowledge Into End-to-End Speech Recognition From External Text-Only Data. IEEE/ACM Transactions on Audio Speech and Language Processing, 2021, 29, 1340-1351.	5.8	5
6	Self-attention transfer networks for speech emotion recognition. Virtual Reality & Intelligent Hardware, 2021, 3, 43-54.	3.2	20
7	DECN: Dialogical emotion correction network for conversational emotion recognition. Neurocomputing, 2021, 454, 483-495.	5.9	15
8	Multi-aspect self-supervised learning for heterogeneous information network. Knowledge-Based Systems, 2021, 233, 107474.	7.1	8
9	Combining a parallel 2D CNN with a self-attention Dilated Residual Network for CTC-based discrete speech emotion recognition. Neural Networks, 2021, 141, 52-60.	5.9	56
10	Self-supervised graph representation learning via bootstrapping. Neurocomputing, 2021, 456, 88-96.	5.9	12
11	Expression Analysis Based on Face Regions in Real-world Conditions. International Journal of Automation and Computing, 2020, 17, 96-107.	4.5	33
12	A Public Chinese Dataset for Language Model Adaptation. Journal of Signal Processing Systems, 2020, 92, 839-851.	2,1	2
13	Deep imitator: Handwriting calligraphy imitation via deep attention networks. Pattern Recognition, 2020, 104, 107080.	8.1	10
14	Forward–Backward Decoding Sequence for Regularizing End-to-End TTS. IEEE/ACM Transactions on Audio Speech and Language Processing, 2019, 27, 2067-2079.	5.8	21
15	Semi-supervised Ladder Networks for Speech Emotion Recognition. International Journal of Automation and Computing, 2019, 16, 437-448.	4.5	26
16	Language-Adversarial Transfer Learning for Low-Resource Speech Recognition. IEEE/ACM Transactions on Audio Speech and Language Processing, 2019, 27, 621-630.	5.8	31
17	CTC Regularized Model Adaptation for Improving LSTM RNN Based Multi-Accent Mandarin Speech Recognition. Journal of Signal Processing Systems, 2018, 90, 985-997.	2.1	14
18	Investigating Deep Neural Network Adaptation for Generating Exclamatory and Interrogative Speech in Mandarin. Journal of Signal Processing Systems, 2018, 90, 1039-1052.	2.1	3

Jian-Hua Tao

#	Article	IF	CITATIONS
19	Improving Deep Neural Network Based Speech Synthesis through Contextual Feature Parametrization and Multi-Task Learning. Journal of Signal Processing Systems, 2018, 90, 1025-1037.	2.1	5
20	CHEAVD: a Chinese natural emotional audio–visual database. Journal of Ambient Intelligence and Humanized Computing, 2017, 8, 913-924.	4.9	69
21	Emotional head motion predicting from prosodic and linguistic features. Multimedia Tools and Applications, 2016, 75, 5125-5146.	3.9	5
22	Guest Editorial: Advances in Machine Learning for Speech Processing. Journal of Signal Processing Systems, 2016, 82, 137-140.	2.1	2
23	Investigating Effect of Rich Syntactic Features on Mandarin Prosodic Boundaries Prediction. Journal of Signal Processing Systems, 2016, 82, 263-271.	2.1	6
24	Speech Enhancement Based on Analysis–Synthesis Framework with Improved Parameter Domain Enhancement. Journal of Signal Processing Systems, 2016, 82, 141-150.	2.1	8
25	User behavior fusion in dialog management with multi-modal history cues. Multimedia Tools and Applications, 2015, 74, 10025-10051.	3.9	8
26	Hierarchical stress modeling and generation in mandarin for expressive Text-to-Speech. Speech Communication, 2015, 72, 59-73.	2.8	6
27	Pitch-Scaled Spectrum Based Excitation Model for HMM-based Speech Synthesis. Journal of Signal Processing Systems, 2014, 74, 423-435.	2.1	8
28	Guest Editorial: Machine Learning for Signal Processing. Journal of Signal Processing Systems, 2014, 74, 281-283.	2.1	1
29	A multimodal approach of generating 3D human-like talking agent. Journal on Multimodal User Interfaces, 2012, 5, 61-68.	2.9	2