Mark Paetzel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9578459/publications.pdf

Version: 2024-02-01

49 papers

3,135 citations

186265 28 h-index 223800 46 g-index

50 all docs

50 docs citations

50 times ranked

2933 citing authors

#	Article	IF	CITATIONS
1	Signal Peptidases. Chemical Reviews, 2002, 102, 4549-4580.	47.7	440
2	Crystal structure of a bacterial signal peptidase in complex with a \hat{l}^2 -lactam inhibitor. Nature, 1998, 396, 186-190.	27.8	291
3	Unconventional serine proteases: Variations on the catalytic Ser/His/Asp triad configuration. Protein Science, 2008, 17, 2023-2037.	7.6	254
4	Crystal Structure of LexA. Cell, 2001, 106, 585-594.	28.9	197
5	The structure and mechanism of bacterial type I signal peptidases. , 2000, 87, 27-49.		147
6	Crystallographic structure of wild-type SARS-CoV-2 main protease acyl-enzyme intermediate with physiological C-terminal autoprocessing site. Nature Communications, 2020, $11,5877$.	12.8	141
7	Catalytic hydroxyl/amine dyads within serine proteases. Trends in Biochemical Sciences, 1997, 22, 28-31.	7.5	136
8	The bacterial outer membrane βâ€barrel assembly machinery. Protein Science, 2012, 21, 751-768.	7.6	98
9	Crystal Structure of a Bacterial Signal Peptidase Apoenzyme. Journal of Biological Chemistry, 2002, 277, 9512-9519.	3.4	96
10	Crystallographic and Biophysical Analysis of a Bacterial Signal Peptidase in Complex with a Lipopeptide-based Inhibitor. Journal of Biological Chemistry, 2004, 279, 30781-30790.	3.4	89
11	Use of Site-directed Chemical Modification to Study an Essential Lysine in Escherichia coli Leader Peptidase. Journal of Biological Chemistry, 1997, 272, 9994-10003.	3.4	72
12	Crystal Structure of Escherichia coli BamB, a Lipoprotein Component of the \hat{l}^2 -Barrel Assembly Machinery Complex. Journal of Molecular Biology, 2011, 406, 667-678.	4.2	72
13	Crystal Structure of \hat{l}^2 -Barrel Assembly Machinery BamCD Protein Complex. Journal of Biological Chemistry, 2011, 286, 39116-39121.	3.4	71
14	Characterization of a soluble, catalytically active form of Escherichia coli leader peptidase: requirement of detergent or phospholipid for optimal activity. Biochemistry, 1995, 34, 3935-3941.	2.5	67
15	Structure and mechanism of Escherichia coli type I signal peptidase. Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 1497-1508.	4.1	65
16	Crystal Structure of a Novel Viral Protease with a Serine/Lysine Catalytic Dyad Mechanism. Journal of Molecular Biology, 2006, 358, 1378-1389.	4.2	62
17	Crystallographic Analysis of Bacterial Signal Peptidase in Ternary Complex with Arylomycin A ₂ and a β-Sultam Inhibitor. Biochemistry, 2009, 48, 8976-8984.	2.5	61
18	The Role of the Membrane-spanning Domain of Type I Signal Peptidases in Substrate Cleavage Site Selection. Journal of Biological Chemistry, 2000, 275, 38813-38822.	3.4	51

#	Article	lF	Citations
19	Phosphatidylethanolamine mediates insertion of the catalytic domain of leader peptidase in membranes. FEBS Letters, 1998, 431, 75-79.	2.8	49
20	Synthesis and Characterization of the Arylomycin Lipoglycopeptide Antibiotics and the Crystallographic Analysis of Their Complex with Signal Peptidase. Journal of the American Chemical Society, 2011, 133, 17869-17877.	13.7	49
21	Common protein architecture and binding sites in proteases utilizing a Ser/Lys dyad mechanism. Protein Science, 1999, 8, 2533-2536.	7.6	45
22	Structural Characterization of <i>Escherichia coli</i> BamE, a Lipoprotein Component of the \hat{l}^2 -Barrel Assembly Machinery Complex. Biochemistry, 2011, 50, 1081-1090.	2.5	45
23	Crystal Structure of a Bacterial Signal Peptide Peptidase. Journal of Molecular Biology, 2008, 376, 352-366.	4.2	44
24	Identification of Residues in DmsD for Twin-Arginine Leader Peptide Binding, Defined through Random and Bioinformatics-Directed Mutagenesis. Biochemistry, 2008, 47, 2749-2759.	2.5	35
25	The Role of the Conserved Box E Residues in the Active Site of the Escherichia coli Type I Signal Peptidase. Journal of Biological Chemistry, 2000, 275, 6490-6498.	3.4	33
26	Effect of Divalent Metal Cations on the Dimerization of OXA-10 and -14 Class D \hat{l}^2 -Lactamases from Pseudomonas aeruginosa. Biochemistry, 2001, 40, 9412-9420.	2.5	33
27	Structural Analysis of a Monomeric Form of the Twin-Arginine Leader Peptide Binding Chaperone Escherichia coli DmsD. Journal of Molecular Biology, 2009, 389, 124-133.	4.2	31
28	The Identification of Residues That Control Signal Peptidase Cleavage Fidelity and Substrate Specificity. Journal of Biological Chemistry, 2005, 280, 6731-6741.	3.4	30
29	Crystallization of a soluble, catalytically active form of Escherichia coli leader peptidase. Proteins: Structure, Function and Bioinformatics, 1995, 23, 122-125.	2.6	25
30	Crystal Structure of the VP4 Protease from Infectious Pancreatic Necrosis Virus Reveals the Acyl-Enzyme Complex for an Intermolecular Self-cleavage Reaction. Journal of Biological Chemistry, 2007, 282, 24928-24937.	3.4	25
31	Mutational Evidence of Transition State Stabilization by Serine 88 inEscherichia coliType I Signal Peptidaseâ€,‡. Biochemistry, 2000, 39, 7276-7283.	2.5	24
32	<i>Escherichia coli</i> Signal Peptide Peptidase A Is a Serine-Lysine Protease with a Lysine Recruited to the Nonconserved Amino-Terminal Domain in the S49 Protease Family. Biochemistry, 2008, 47, 6361-6369.	2.5	20
33	Crystallographic analysis of the C-terminal domain of the <i>Escherichia coli /i >lipoprotein BamC. Acta Crystallographica Section F: Structural Biology Communications, 2011, 67, 1350-1358.</i>	0.7	20
34	Bacterial Signal Peptidases. Sub-Cellular Biochemistry, 2019, 92, 187-219.	2.4	20
35	Altered -3 Substrate Specificity of Escherichia coli Signal Peptidase 1 Mutants as Revealed by Screening a Combinatorial Peptide Library. Journal of Biological Chemistry, 2007, 282, 417-425.	3.4	18
36	Crystal Structure of a Viral Protease Intramolecular Acyl-enzyme Complex. Journal of Biological Chemistry, 2011, 286, 12475-12482.	3.4	15

#	Article	IF	CITATIONS
37	Crystal Structure of Bacillus subtilis Signal Peptide Peptidase A. Journal of Molecular Biology, 2012, 419, 347-358.	4.2	15
38	Profiling the Substrate Specificity of Viral Protease VP4 by a FRET-Based Peptide Library Approach. Biochemistry, 2009, 48, 5753-5759.	2.5	12
39	The structure of cardiac troponin C regulatory domain with bound Cd ²⁺ reveals a closed conformation and unique ion coordination. Acta Crystallographica Section D: Biological Crystallography, 2013, 69, 722-734.	2.5	9
40	Purification of a Tat leader peptide by co-expression with its chaperone. Protein Expression and Purification, 2012, 84, 167-172.	1.3	6
41	1H, 13C and 15N resonance assignments and peptide binding site chemical shift perturbation mapping for the Escherichia coli redox enzyme chaperone DmsD. Biomolecular NMR Assignments, 2013, 7, 193-197.	0.8	5
42	Structure of Signal Peptide Peptidase A with C-Termini Bound in the Active Sites: Insights into Specificity, Self-Processing, and Regulation. Biochemistry, 2013, 52, 8811-8822.	2.5	5
43	Crystal Structure of Cardiac Troponin C Regulatory Domain in Complex with Cadmium and Deoxycholic Acid Reveals Novel Conformation. Journal of Molecular Biology, 2011, 413, 699-711.	4.2	4
44	Crystal Structures of Yellowtail Ascites Virus VP4 Protease. Journal of Biological Chemistry, 2013, 288, 13068-13081.	3.4	4
45	Purification, crystallization and preliminary X-ray analysis of truncated and mutant forms of VP4 protease from infectious pancreatic necrosis virus. Acta Crystallographica Section F: Structural Biology Communications, 2006, 62, 1235-1238.	0.7	2
46	Expression, purification and crystallization of VP4 protease from <i>Tellina</i> Virus 1. Acta Crystallographica Section F: Structural Biology Communications, 2011, 67, 157-160.	0.7	2
47	Tellina virus 1 VP4 peptidase., 2013,, 3523-3527.		1
48	UmuD and UmuD′ Proteins. , 2013, , 3487-3492.		1
49	Expression and Purification of the Individual Bam Components BamB–E. Methods in Molecular Biology, 2015, 1329, 179-188.	0.9	O