Yao Yao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9578003/publications.pdf

Version: 2024-02-01

516710 501196 27 895 16 28 citations h-index g-index papers 30 30 30 1502 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Human induced-T-to-natural killer cells have potent anti-tumour activities. Biomarker Research, 2022, 10, 13.	6.8	4
2	Transforming primary human hepatocytes into hepatocellular carcinoma with genetically defined factors. EMBO Reports, 2022, , e54275.	4.5	5
3	The Chemokine Receptor CCR8 Is a Target of Chimeric Antigen T Cells for Treating T Cell Malignancies. Frontiers in Immunology, 2022, 13, .	4.8	1
4	DAP10 integration in CAR-T cells enhances the killing of heterogeneous tumors by harnessing endogenous NKG2D. Molecular Therapy - Oncolytics, 2022, 26, 15-26.	4.4	3
5	IL-6 trans-signaling promotes the expansion and anti-tumor activity of CAR T cells. Leukemia, 2021, 35, 1380-1391.	7.2	26
6	Tissue-based metabolomics reveals metabolic biomarkers and potential therapeutic targets for esophageal squamous cell carcinoma. Journal of Pharmaceutical and Biomedical Analysis, 2021, 197, 113937.	2.8	10
7	Chimeric CTLA4-CD28-CD3z T Cells Potentiate Antitumor Activity Against CD80/CD86–Positive B Cell Malignancies. Frontiers in Immunology, 2021, 12, 642528.	4.8	10
8	Myeloid-derived suppressor cells promote lung cancer metastasis by CCL11 to activate ERK and AKT signaling and induce epithelial-mesenchymal transition in tumor cells. Oncogene, 2021, 40, 1476-1489.	5.9	39
9	Chimeric antigen receptor T cells targeting PD-L1 suppress tumor growth. Biomarker Research, 2020, 8, 19.	6.8	42
10	PSCA is a target of chimeric antigen receptor T cells in gastric cancer. Biomarker Research, 2020, 8, 3.	6.8	23
11	Mesothelin is a target of chimeric antigen receptor T cells for treating gastric cancer. Journal of Hematology and Oncology, 2019, 12, 18.	17.0	7 9
12	DNAX-activating protein 10 co-stimulation enhances the anti-tumor efficacy of chimeric antigen receptor T cells. Oncolmmunology, 2019, 8, e1509173.	4.6	23
13	Establishment of peripheral blood mononuclear cell-derived humanized lung cancer mouse models for studying efficacy of PD-L1/PD-1 targeted immunotherapy. MAbs, 2018, 10, 1301-1311.	5.2	57
14	PSCA and MUC1 in non-small-cell lung cancer as targets of chimeric antigen receptor T cells. Oncolmmunology, 2017, 6, e1284722.	4.6	87
15	Incorporation of a hinge domain improves the expansion of chimeric antigen receptor T cells. Journal of Hematology and Oncology, 2017, 10, 68.	17.0	70
16	CRISPR/Cas9-Mediated Deletion of Foxn1 in NOD/SCID/IL2rgâ^'/â^' Mice Results in Severe Immunodeficiency. Scientific Reports, 2017, 7, 7720.	3.3	12
17	CD215+ Myeloid Cells Respond to Interleukin 15 Stimulation and Promote Tumor Progression. Frontiers in Immunology, 2017, 8, 1713.	4.8	6
18	Defined, serum/feeder-free conditions for expansion and drug screening of primary B-acute lymphoblastic leukemia. Oncotarget, 2017, 8, 106382-106392.	1.8	7

#	Article	IF	CITATION
19	GZD824 suppresses the growth of human B cell precursor acute lymphoblastic leukemia cells by inhibiting the SRC kinase and PI3K/AKT pathways. Oncotarget, 2017, 8, 87002-87015.	1.8	16
20	Heterogeneity of CD34 and CD38 expression in acute B lymphoblastic leukemia cells is reversible and not hierarchically organized. Journal of Hematology and Oncology, 2016, 9, 94.	17.0	15
21	Anti-GPC3-CAR T Cells Suppress the Growth of Tumor Cells in Patient-Derived Xenografts of Hepatocellular Carcinoma. Frontiers in Immunology, 2016, 7, 690.	4.8	150
22	Effective elimination of adult B-lineage acute lymphoblastic leukemia by disulfiram/copper complex <i>in vitro</i> and <i>in vivo</i> in patient-derived xenograft models. Oncotarget, 2016, 7, 82200-82212.	1.8	17
23	Quantitative evaluation of the immunodeficiency of a mouse strain by tumor engraftments. Journal of Hematology and Oncology, 2015, 8, 59.	17.0	43
24	Genome-wide analyses identify KLF4 as an important negative regulator in T-cell acute lymphoblastic leukemia through directly inhibiting T-cell associated genes. Molecular Cancer, 2015, 14, 26.	19.2	27
25	Loss of Angiopoietin-like 7 diminishes the regeneration capacity of hematopoietic stem and progenitor cells. Journal of Hematology and Oncology, 2015, 8, 7.	17.0	21
26	ANGPTL7 regulates the expansion and repopulation of human hematopoietic stem and progenitor cells. Haematologica, 2015, 100, 585-594.	3. 5	38
27	The differential protein and lipid compositions of noncaveolar lipid microdomains and caveolae. Cell Research, 2009, 19, 497-506.	12.0	57