Jason J Yoo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9577994/publications.pdf

Version: 2024-02-01

15 papers	3,073 citations	623734 14 h-index	996975 15 g-index
рирсто	Citations	II IIIQCX	g mucx
15 all docs	15 docs citations	15 times ranked	3792 citing authors

#	Article	IF	Citations
1	Molecular Engineering for Functionâ€Tailored Interface Modifier in Highâ€Performance Perovskite Solar Cells. Advanced Energy Materials, 2022, 12, .	19.5	16
2	Toward Efficient Perovskite Solar Cells: Progress, Strategies, and Perspectives. ACS Energy Letters, 2022, 7, 2084-2091.	17.4	68
3	Efficient perovskite solar cells via improved carrier management. Nature, 2021, 590, 587-593.	27.8	1,972
4	A data fusion approach to optimize compositional stability of halide perovskites. Matter, 2021, 4, 1305-1322.	10.0	75
5	Interfacial Trapâ€Assisted Triplet Generation in Lead Halide Perovskite Sensitized Solidâ€State Upconversion. Advanced Materials, 2021, 33, e2100854.	21.0	18
6	How machine learning can help select capping layers to suppress perovskite degradation. Nature Communications, 2020, 11, 4172.	12.8	75
7	Single Nanocrystal Spectroscopy of Shortwave Infrared Emitters. ACS Nano, 2019, 13, 1042-1049.	14.6	16
8	The effect of structural dimensionality on carrier mobility in lead-halide perovskites. Journal of Materials Chemistry A, 2019, 7, 23949-23957.	10.3	38
9	An interface stabilized perovskite solar cell with high stabilized efficiency and low voltage loss. Energy and Environmental Science, 2019, 12, 2192-2199.	30.8	542
10	Zinc Thiolate Enables Bright Cuâ€Deficient Cuâ€Inâ€S/ZnS Quantum Dots. Small, 2019, 15, e1901462.	10.0	24
11	Solvent-Engineering Method to Deposit Compact Bismuth-Based Thin Films: Mechanism and Application to Photovoltaics. Chemistry of Materials, 2018, 30, 336-343.	6.7	87
12	Mechanistic Insights and Controlled Synthesis of Radioluminescent ZnSe Quantum Dots Using a Microfluidic Reactor. Chemistry of Materials, 2018, 30, 8562-8570.	6.7	32
13	Increasing the Collision Rate of Particle Impact Electroanalysis with Magnetically Guided Pt-Decorated Iron Oxide Nanoparticles. ACS Nano, 2015, 9, 7583-7595.	14.6	47
14	Direct electrochemical detection of individual collisions between magnetic microbead/silver nanoparticle conjugates and a magnetized ultramicroelectrode. Chemical Science, 2015, 6, 6665-6671.	7.4	31
15	Electrochemical Detection of Insulating Beads at Subattomolar Concentration via Magnetic Enrichment in a Microfluidic Device. Analytical Chemistry, 2014, 86, 4302-4307.	6.5	32