
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9577958/publications.pdf Version: 2024-02-01

Ρλίση Μ Ένεξ

#	Article	IF	CITATIONS
1	Tracking Hunter-Gatherer Impact on Vegetation in Last Interglacial and Holocene Europe: Proxies and Challenges. Journal of Archaeological Method and Theory, 2022, 29, 989-1033.	3.0	12
2	Pollen-Based Maps of Past Regional Vegetation Cover in Europe Over 12 Millennia—Evaluation and Potential. Frontiers in Ecology and Evolution, 2022, 10, .	2.2	8
3	European pollen-based REVEALS land-cover reconstructions for the Holocene: methodology, mapping and potentials. Earth System Science Data, 2022, 14, 1581-1619.	9.9	42
4	Mid-Holocene European climate revisited: New high-resolution regional climate model simulations using pollen-based land-cover. Quaternary Science Reviews, 2022, 281, 107431.	3.0	18
5	Reconstructing sea-level change in the Falkland Islands (Islas Malvinas) using salt-marsh foraminifera, diatoms and testate amoebae. Marine Micropaleontology, 2021, 162, 101923.	1.2	3
6	Winter temperature and forest cover have shaped red deer distribution in Europe and the Ural Mountains since the Late Pleistocene. Journal of Biogeography, 2021, 48, 147-159.	3.0	26
7	What drives biodiversity patterns? Using longâ€ŧerm multidisciplinary data to discern centennialâ€scale change. Journal of Ecology, 2021, 109, 1396-1410.	4.0	24
8	Archaeology and agriculture: plants, people, and past land-use. Trends in Ecology and Evolution, 2021, 36, 943-954.	8.7	10
9	Nonlinear landscape and cultural response to sea-level rise. Science Advances, 2020, 6, .	10.3	11
10	The spatiotemporal spread of human migrations during the European Holocene. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 8989-9000.	7.1	52
11	Mapping upland peat depth using airborne radiometric and lidar survey data. Geoderma, 2019, 335, 78-87.	5.1	28
12	Adapt or die—Response of large herbivores to environmental changes in Europe during the Holocene. Global Change Biology, 2019, 25, 2915-2930.	9.5	35
13	Archaeological assessment reveals Earth's early transformation through land use. Science, 2019, 365, 897-902.	12.6	369
14	Prehistoric palaeodemographics and regional land cover change in eastern Iberia. Holocene, 2019, 29, 799-815.	1.7	40
15	Mediterranean landscape change during the Holocene: Synthesis, comparison and regional trends in population, land cover and climate. Holocene, 2019, 29, 923-937.	1.7	96
16	Role of recent climate change on carbon sequestration in peatland systems. Science of the Total Environment, 2019, 667, 348-358.	8.0	16
17	Supply and demand in prehistory? Economics of Neolithic mining in northwest Europe. Journal of Anthropological Archaeology, 2019, 54, 149-160.	1.6	12
18	Holocene landscape dynamics and long-term population trends in the Levant. Holocene, 2019, 29, 708-727.	1.7	48

#	Article	IF	CITATIONS
19	Long-term trends of land use and demography in Greece: A comparative study. Holocene, 2019, 29, 742-760.	1.7	58
20	Tyrrhenian central Italy: Holocene population and landscape ecology. Holocene, 2019, 29, 761-775.	1.7	37
21	From influence to impact: The multifunctional land use in Mediterranean prehistory emerging from palynology of archaeological sites (8.0-2.8 ka BP). Holocene, 2019, 29, 830-846.	1.7	65
22	The changing face of the Mediterranean – Land cover, demography and environmental change: Introduction and overview. Holocene, 2019, 29, 703-707.	1.7	24
23	Holocene land cover and population dynamics in Southern France. Holocene, 2019, 29, 776-798.	1.7	42
24	Pollen-inferred regional vegetation patterns and demographic change in Southern Anatolia through the Holocene. Holocene, 2019, 29, 728-741.	1.7	31
25	Trajectories of change in Mediterranean Holocene vegetation through classification of pollen data. Vegetation History and Archaeobotany, 2018, 27, 351-364.	2.1	34
26	Quantified moorland vegetation and assessment of the role of burning over the past five millennia. Journal of Vegetation Science, 2018, 29, 393-403.	2.2	12
27	Glastonbury Lake Village Revisited: A Multi-proxy Palaeoenvironmental Investigation of an Iron Age Wetland Settlement. Journal of Wetland Archaeology, 2018, 18, 115-137.	1.2	5
28	Panâ€Mediterranean Holocene vegetation and landâ€cover dynamics from synthesized pollen data. Journal of Biogeography, 2018, 45, 2159-2174.	3.0	33
29	Twitter: an emerging source for geographical study. Geography, 2018, 103, 97-101.	0.6	2
30	The first 100 years of pollen analysis. Nature Plants, 2017, 3, .	9.3	47
31	Resolving discrepancies between field and modelled relative seaâ€ l evel data: lessons from western Ireland. Journal of Quaternary Science, 2017, 32, 957-975.	2.1	9
32	Quantifying the effects of land use and climate on Holocene vegetation in Europe. Quaternary Science Reviews, 2017, 171, 20-37.	3.0	97
33	Holocene fluctuations in human population demonstrate repeated links to food production and climate. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E10524-E10531.	7.1	194
34	Late-glacial and Holocene European pollen data. Journal of Maps, 2017, 13, 921-928.	2.0	52
35	Constraining the Deforestation History of Europe: Evaluation of Historical Land Use Scenarios with Pollen-Based Land Cover Reconstructions. Land, 2017, 6, 91.	2.9	62
36	Late Holocene climate: Natural or anthropogenic?. Reviews of Geophysics, 2016, 54, 93-118.	23.0	150

#	Article	IF	CITATIONS
37	Peatlands as knowledge archives. , 2016, , 95-113.		10
38	Does peatland drainage damage the palaeoecological record?. Review of Palaeobotany and Palynology, 2015, 221, 92-105.	1.5	7
39	Later Holocene vegetation history of the Isles of Scilly, UK: coastal influence and human land use in a small island context. Journal of Quaternary Science, 2015, 30, 764-778.	2.1	9
40	Ten years on: what can <i>Google Earth</i> offer the geoscience community?. Geology Today, 2015, 31, 216-221.	0.9	8
41	Automated mapping of linear dunefield morphometric parameters from remotely-sensed data. Aeolian Research, 2015, 19, 215-224.	2.7	24
42	Moving forwards? Palynology and the human dimension. Journal of Archaeological Science, 2015, 56, 117-132.	2.4	41
43	Pollenâ€based quantitative reconstructions of Holocene regional vegetation cover (plantâ€functional) Tj ETQq1 3 676-697.	1 0.78431 9.5	4 rgBT /Over 161
44	From forest to farmland: pollenâ€inferred land cover change across Europe using the pseudobiomization approach. Global Change Biology, 2015, 21, 1197-1212.	9.5	133
45	Regional climate model simulations for Europe at 6 and 0.2 k BP: sensitivity to changes in anthropogenic deforestation. Climate of the Past, 2014, 10, 661-680.	3.4	68
46	Is Neolithic land use correlated with demography? An evaluation of pollen-derived land cover and radiocarbon-inferred demographic change from Central Europe. Holocene, 2014, 24, 1297-1307.	1.7	57
47	Managing, Valuing, and Protecting Heritage Resources in the Twenty-First Century: Peatland Archaeology, the Ecosystem Services Framework, and the Kyoto Protocol. Conservation and Management of Archaeological Sites, 2014, 16, 236-244.	0.5	14
48	Recent environmental change in an upland reservoir catchment: a palaeoecological perspective. Journal of Paleolimnology, 2014, 52, 229-244.	1.6	4
49	The impact of the Neolithic agricultural transition in Britain: a comparison of pollen-based land-cover and archaeological 14C date-inferred population change. Journal of Archaeological Science, 2014, 51, 216-224.	2.4	128
50	Towards mapping the late Quaternary vegetation change of Europe. Vegetation History and Archaeobotany, 2014, 23, 75-86.	2.1	105
51	Holocene changes in vegetation composition in northern Europe: why quantitative pollen-based vegetation reconstructions matter. Quaternary Science Reviews, 2014, 90, 199-216.	3.0	112
52	The importance of subâ€peat carbon storage as shown by data from <scp>D</scp> artmoor, <scp>UK</scp> . Soil Use and Management, 2014, 30, 23-31.	4.9	10
53	Creating spatially continuous maps of past land cover from point estimates: A new statistical approach applied to pollen data. Ecological Complexity, 2014, 20, 127-141.	2.9	31
54	The application of geospatial interpolation methods in the reconstruction of Quaternary landform records. Geomorphology, 2014, 216, 234-246.	2.6	16

#	Article	IF	CITATIONS
55	A comparison of remotely sensed and pollenâ€based approaches to mapping Europe's land cover. Journal of Biogeography, 2014, 41, 2080-2092.	3.0	27
56	The European Modern Pollen Database (EMPD) project. Vegetation History and Archaeobotany, 2013, 22, 521-530.	2.1	101
57	The Holocene vegetation cover of Britain and Ireland: overcoming problems of scale and discerning patterns of openness. Quaternary Science Reviews, 2013, 73, 132-148.	3.0	118
58	The development of GIS education in the UK and Turkey: a comparative review. Planet, 2013, 27, 14-20.	0.1	4
59	A spatial approach to upland vegetation change and human impact: the Aber Valley, Snowdonia. Environmental Archaeology, 2012, 17, 80-94.	1.2	3
60	Bronze Age landscape dynamics: spatially detailed pollen analysis from a ceremonial complex. Journal of Archaeological Science, 2012, 39, 2764-2773.	2.4	26
61	Differences in time and space in vegetation patterning: analysis of pollen data from Dartmoor, UK. Landscape Ecology, 2012, 27, 745-760.	4.2	28
62	Holocene land-cover reconstructions for studies on land cover-climate feedbacks. Climate of the Past, 2010, 6, 483-499.	3.4	214
63	The date and context of a stone row: Cut Hill, Dartmoor, south-west England. Antiquity, 2010, 84, 55-70.	1.0	8
64	Pushing the boundaries of data? Issues in the construction of rich visual past landscapes. Quaternary International, 2010, 220, 153-159.	1.5	20
65	The use of pollen analysis to reveal Holocene treeline dynamics: a modelling approach. Holocene, 2009, 19, 273-283.	1.7	7
66	The European Pollen Database: past efforts and current activities. Vegetation History and Archaeobotany, 2009, 18, 417-424.	2.1	106
67	Pollen modelling, palaeoecology and archaeology: virtualisation and/or visualisation of the past?. Vegetation History and Archaeobotany, 2008, 17, 543-549.	2.1	27
68	Pollen productivity estimates of key European plant taxa for quantitative reconstruction of past vegetation: a review. Vegetation History and Archaeobotany, 2008, 17, 461-478.	2.1	275
69	The use of modelling and simulation approach in reconstructing past landscapes from fossil pollen data: a review and results from the POLLANDCAL network. Vegetation History and Archaeobotany, 2008, 17, 419-443.	2.1	152
70	Temporal and spatial variation in the diet of a marine top predator—links with commercial fisheries. Marine Ecology - Progress Series, 2008, 367, 223-232.	1.9	37
71	Bronze Age upland settlement decline in southwest England: testing the climate change hypothesis. Journal of Archaeological Science, 2008, 35, 87-98.	2.4	48
72	Historical context and chronology of Bronze Age land enclosure on Dartmoor, UK. Journal of Archaeological Science, 2008, 35, 2250-2261.	2.4	44

#	Article	IF	CITATIONS
73	Pollen productivity estimates from the forest—tundra ecotone in west-central Sweden: implications for vegetation reconstruction at the limits of the boreal forest. Holocene, 2008, 18, 323-332.	1.7	61
74	The importance of local-scale openness within regions dominated by closed woodland. Journal of Quaternary Science, 2007, 22, 571-578.	2.1	31
75	Simulating the nature of vegetation communities at the opening of the Neolithic on Achill Island, Co. Mayo, Ireland — the potential role of models of pollen dispersal and deposition. Review of Palaeobotany and Palynology, 2007, 144, 135-144.	1.5	20
76	GIS and the application of a model of pollen deposition and dispersal: a new approach to testing landscape hypotheses using the POLLANDCAL models. Journal of Archaeological Science, 2006, 33, 483-493.	2.4	52
77	A modelling approach to locating and characterising elm decline/landnam landscapes. Quaternary Science Reviews, 2006, 25, 632-644.	3.0	56
78	Sustainable conservation and management of the historic environment record in upland peat: a view from Exmoor. International Journal of Biodiversity Science and Management, 2006, 2, 146-149.	0.7	2
79	Beyond Villages and Open Fields: The Origins and Development of a Historic Landscape Characterised by Dispersed Settlement in South-West England. Medieval Archaeology, 2006, 50, 31-70.	0.5	29
80	Characterising the late prehistoric, â€~Romano-British' and medieval landscape, and dating the emergence of a regionally distinct agricultural system in South West Britain. Journal of Archaeological Science, 2004, 31, 1699-1714.	2.4	23
81	Mid- to late-Holocene vegetation history of Greater Exmoor, UK: estimating the spatial extent of human-induced vegetation change. Vegetation History and Archaeobotany, 2003, 12, 215-232.	2.1	50