
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9577927/publications.pdf Version: 2024-02-01

Мілстнії Ц

#	Article	IF	CITATIONS
1	Bioinspired Quasiâ€3D Multiplexed Antiâ€Counterfeit Imaging via Selfâ€Assembled and Nanoimprinted Photonic Architectures. Advanced Materials, 2022, 34, e2107243.	21.0	70
2	Recent Progress in Responsive Structural Color. Journal of Physical Chemistry Letters, 2022, 13, 2885-2900.	4.6	38
3	Adjustable object floating states based on three-segment three-phase contact line evolution. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2201665119.	7.1	1
4	Nonâ€Hookean Droplet Spring for Enhancing Hydropower Harvest. Small, 2022, 18, e2200875.	10.0	7
5	Nacre inspired robust self-encapsulating flexible perovskite photodetector. Nano Energy, 2022, 98, 107254.	16.0	17
6	Microâ€Nano Structure Functionalized Perovskite Optoelectronics: From Structure Functionalities to Device Applications. Advanced Functional Materials, 2022, 32, .	14.9	25
7	Bioinspired multiscale optical structures towards efficient light management in optoelectronic devices. Materials Today Nano, 2022, , 100225.	4.6	2
8	Graphdiyne Nanospheres as a Wettability and Electron Modifier for Enhanced Hydrogenation Catalysis. Angewandte Chemie - International Edition, 2022, 61, .	13.8	22
9	Bioinspired light-driven photonic crystal actuator with MXene-hydrogel muscle. Cell Reports Physical Science, 2022, 3, 100915.	5.6	19
10	Directional Laser from Solutionâ€Grown Gratingâ€Patterned Perovskite Singleâ€Crystal Microdisks. Angewandte Chemie - International Edition, 2022, 61, .	13.8	5
11	Thermally driven self-healing efficient flexible perovskite solar cells. Nano Energy, 2022, 100, 107523.	16.0	20
12	Designable structural coloration by colloidal particle assembly: from nature to artificial manufacturing. IScience, 2021, 24, 102121.	4.1	52
13	Tautomeric Molecule Acts as a "Sunscreen―for Metal Halide Perovskite Solar Cells. Angewandte Chemie, 2021, 133, 8755-8759.	2.0	7
14	Tautomeric Molecule Acts as a "Sunscreen―for Metal Halide Perovskite Solar Cells. Angewandte Chemie - International Edition, 2021, 60, 8673-8677.	13.8	67
15	Precise Droplet Manipulation Based on Surface Heterogeneity. Accounts of Materials Research, 2021, 2, 230-241.	11.7	22
16	Rücktitelbild: Tautomeric Molecule Acts as a "Sunscreen―for Metal Halide Perovskite Solar Cells (Angew. Chem. 16/2021). Angewandte Chemie, 2021, 133, 9228-9228.	2.0	0
17	Colorful Efficient Moiréâ€Perovskite Solar Cells. Advanced Materials, 2021, 33, e2008091.	21.0	37
18	Perovskite Solar Cells: Colorful Efficient Moiréâ€Perovskite Solar Cells (Adv. Mater. 15/2021). Advanced Materials, 2021, 33, 2170116.	21.0	4

#	Article	IF	CITATIONS
19	Bioinspired Color Switchable Photonic Crystal Silicone Elastomer Kirigami. Angewandte Chemie - International Edition, 2021, 60, 14307-14312.	13.8	66
20	Bioinspired Color Switchable Photonic Crystal Silicone Elastomer Kirigami. Angewandte Chemie, 2021, 133, 14428-14433.	2.0	5
21	Moiré Perovskite Photodetector toward High ensitive Digital Polarization Imaging. Advanced Energy Materials, 2021, 11, 2100742.	19.5	39
22	Titelbild: Bioinspired Color Switchable Photonic Crystal Silicone Elastomer Kirigami (Angew. Chem.) Tj ETQq0 0 0	rgBT /Ove 2.0	erlock 10 Tf 5
23	Dissociation of Subjective and Objective Alertness During Prolonged Wakefulness. Nature and Science of Sleep, 2021, Volume 13, 923-932.	2.7	7
24	Moiré Perovskite Photodetector toward High‣ensitive Digital Polarization Imaging (Adv. Energy) Tj ETQq0 0	0 rgBT /C	overlock 10 Tf
25	Facile full-color printing with a single transparent ink. Science Advances, 2021, 7, eabh1992.	10.3	72
26	Breaking the symmetry to suppress the Plateau–Rayleigh instability and optimize hydropower utilization. Nature Communications, 2021, 12, 6899.	12.8	32
27	ReinforcedRimJump: Tangent-Based Shortest-Path Planning for Two-Dimensional Maps. IEEE Transactions on Industrial Informatics, 2020, 16, 949-958.	11.3	10
28	Heterogeneous Wettability Surfaces: Principle, Construction, and Applications. Small Structures, 2020, 1, 2000028.	12.0	39
29	Interfacial modification towards highly efficient and stable perovskite solar cells. Nanoscale, 2020, 12, 18563-18575.	5.6	34
30	<p>Ideal Time of Day for Risky Decision Making: Evidence from the Balloon Analogue Risk Task</p> . Nature and Science of Sleep, 2020, Volume 12, 477-486.	2.7	7
31	Rücktitelbild: Droplet Precise Selfâ€Splitting on Patterned Adhesive Surfaces for Simultaneous Multidetection (Angew. Chem. 26/2020). Angewandte Chemie, 2020, 132, 10754-10754.	2.0	0
32	Controllable Growth of Highâ€Quality Inorganic Perovskite Microplate Arrays for Functional Optoelectronics. Advanced Materials, 2020, 32, e1908006.	21.0	66
33	Programmable droplet manipulation by a magnetic-actuated robot. Science Advances, 2020, 6, eaay5808.	10.3	160
34	Super-tough MXene-functionalized graphene sheets. Nature Communications, 2020, 11, 2077.	12.8	289
35	Droplet Precise Selfâ€5plitting on Patterned Adhesive Surfaces for Simultaneous Multidetection. Angewandte Chemie, 2020, 132, 10622-10626.	2.0	5
36	Droplet Precise Self‧plitting on Patterned Adhesive Surfaces for Simultaneous Multidetection. Angewandte Chemie - International Edition, 2020, 59, 10535-10539.	13.8	65

#	Article	IF	CITATIONS
37	In Situ Inkjet Printing of the Perovskite Single-Crystal Array-Embedded Polydimethylsiloxane Film for Wearable Light-Emitting Devices. ACS Applied Materials & Interfaces, 2020, 12, 22157-22162.	8.0	53
38	A Butterflyâ€Inspired Hierarchical Lightâ€Trapping Structure towards a Highâ€Performance Polarization‣ensitive Perovskite Photodetector. Angewandte Chemie - International Edition, 2019, 58, 16456-16462.	13.8	67
39	A facile fabrication strategy for anisotropic photonic crystals using deformable spherical nanoparticles. Nanoscale, 2019, 11, 14147-14154.	5.6	17
40	Perovskite Solar Cells: Patterned Wettability Surface for Competitionâ€Driving Largeâ€Grained Perovskite Solar Cells (Adv. Energy Mater. 25/2019). Advanced Energy Materials, 2019, 9, 1970098.	19.5	2
41	A Mechanically Robust Conducting Polymer Network Electrode for Efficient Flexible Perovskite Solar Cells. Joule, 2019, 3, 2205-2218.	24.0	175
42	Steerable Droplet Bouncing for Precise Materials Transportation. Advanced Materials Interfaces, 2019, 6, 1901033.	3.7	35
43	A Butterflyâ€Inspired Hierarchical Lightâ€Trapping Structure towards a Highâ€Performance Polarizationâ€5ensitive Perovskite Photodetector. Angewandte Chemie, 2019, 131, 16608-16614.	2.0	26
44	Nacre-inspired crystallization and elastic "brick-and-mortar―structure for a wearable perovskite solar module. Energy and Environmental Science, 2019, 12, 979-987.	30.8	114
45	Layerâ€byâ€Layer Printing: A General Layerâ€byâ€Layer Printing Method for Scalable Highâ€Resolution Fullâ€Co Flexible Luminescent Patterns (Advanced Optical Materials 12/2019). Advanced Optical Materials, 2019, 7, 1970045.	lor 7.3	0
46	Patterned Wettability Surface for Competitionâ€Driving Largeâ€Grained Perovskite Solar Cells. Advanced Energy Materials, 2019, 9, 1900838.	19.5	44
47	A General Layerâ€byâ€Layer Printing Method for Scalable Highâ€Resolution Fullâ€Color Flexible Luminescent Patterns. Advanced Optical Materials, 2019, 7, 1900127.	7.3	13
48	A green solvent for operating highly efficient low-power photon upconversion in air. Physical Chemistry Chemical Physics, 2019, 21, 14516-14520.	2.8	18
49	Spontaneous droplets gyrating via asymmetric self-splitting on heterogeneous surfaces. Nature Communications, 2019, 10, 950.	12.8	135
50	Scalable Fabrication of Conductive Lines by Patterned Wettabilityâ€Assisted Bar oating for Low Cost Paperâ€Based Circuits. Advanced Materials Interfaces, 2019, 6, 1802047.	3.7	7
51	Slot-Waveguide Silicon Nitride Organic Hybrid Distributed Feedback Laser. Scientific Reports, 2019, 9, 18438.	3.3	12
52	Progress of electrically responsive photonic crystals. Composites Communications, 2019, 12, 47-53.	6.3	24
53	RimJump: Edge-based Shortest Path Planning for a 2D Map. Robotica, 2019, 37, 641-655.	1.9	6
54	Integrated silicon nitride organic hybrid DFB laser with inkjet printed gain medium. Optics Express, 2019, 27, 29350.	3.4	8

#	Article	IF	CITATIONS
55	Material gain concentration quenching in organic dye-doped polymer thin films. Optical Materials Express, 2019, 9, 1208.	3.0	12
56	Bioinspired Micropatterned Superhydrophilic Auâ€Areoles for Surfaceâ€Enhanced Raman Scattering (SERS) Trace Detection. Advanced Functional Materials, 2018, 28, 1800448.	14.9	87
57	A Selfâ€Growing Strategy for Largeâ€Scale Crystal Assembly Tubes. Chemistry - an Asian Journal, 2018, 13, 761-764.	3.3	2
58	Diffractionâ€Grated Perovskite Induced Highly Efficient Solar Cells through Nanophotonic Light Trapping. Advanced Energy Materials, 2018, 8, 1702960.	19.5	119
59	Programmed Coassembly of One-Dimensional Binary Superstructures by Liquid Soft Confinement. Journal of the American Chemical Society, 2018, 140, 18-21.	13.7	34
60	Solar Cells: Diffractionâ€Grated Perovskite Induced Highly Efficient Solar Cells through Nanophotonic Light Trapping (Adv. Energy Mater. 12/2018). Advanced Energy Materials, 2018, 8, 1870052.	19.5	3
61	Strong Photonicâ€Bandâ€Gap Effect on the Spontaneous Emission in 3D Lead Halide Perovskite Photonic Crystals. ChemPhysChem, 2018, 19, 2101-2106.	2.1	12
62	Strukturierte kolloidale photonische Kristalle. Angewandte Chemie, 2018, 130, 2571-2581.	2.0	12
63	Patterned Colloidal Photonic Crystals. Angewandte Chemie - International Edition, 2018, 57, 2544-2553.	13.8	413
64	Ultratough Bioinspired Graphene Fiber <i>via</i> Sequential Toughening of Hydrogen and Ionic Bonding. ACS Nano, 2018, 12, 12638-12645.	14.6	53
65	Recent advances in colloidal photonic crystal sensors: Materials, structures and analysis methods. Nano Today, 2018, 22, 132-144.	11.9	170
66	Bioassays: Bioinspired Micropatterned Superhydrophilic Au-Areoles for Surface-Enhanced Raman Scattering (SERS) Trace Detection (Adv. Funct. Mater. 21/2018). Advanced Functional Materials, 2018, 28, 1870144.	14.9	0
67	Plasmonic Biomimetic Nanocomposite with Spontaneous Subwavelength Structuring as Broadband Absorbers. ACS Energy Letters, 2018, 3, 1578-1583.	17.4	29
68	High efficient perovskite whispering-gallery solar cells. Nano Energy, 2018, 51, 556-562.	16.0	51
69	A general printing approach for scalable growth of perovskite single-crystal films. Science Advances, 2018, 4, eaat2390.	10.3	150
70	Janus Structural Color from a 2D Photonic Crystal Hybrid with a Fabry–Perot Cavity. Advanced Optical Materials, 2018, 6, 1800651.	7.3	53
71	Bioinspired Supertough Graphene Fiber through Sequential Interfacial Interactions. ACS Nano, 2018, 12, 8901-8908.	14.6	67
72	Research Progress of Photonic Crystal Solar Cells. Acta Chimica Sinica, 2018, 76, 9.	1.4	10

#	Article	IF	CITATIONS
73	Single Crystals: Directâ€Writing Multifunctional Perovskite Single Crystal Arrays by Inkjet Printing (Small 8/2017). Small, 2017, 13, .	10.0	1
74	Patterned photonic crystals for hiding information. Journal of Materials Chemistry C, 2017, 5, 4621-4628.	5.5	89
75	Directâ€Writing Multifunctional Perovskite Single Crystal Arrays by Inkjet Printing. Small, 2017, 13, 1603217.	10.0	117
76	Enhanced Efficiency of Perovskite Solar Cells by using Core–Ultrathin Shell Structure Ag@SiO ₂ Nanowires as Plasmonic Antennas. Advanced Electronic Materials, 2017, 3, 1700169.	5.1	24
77	Wearable Largeâ€Scale Perovskite Solarâ€Power Source via Nanocellular Scaffold. Advanced Materials, 2017, 29, 1703236.	21.0	152
78	Rayleigh Instability-Assisted Satellite Droplets Elimination in Inkjet Printing. ACS Applied Materials & Interfaces, 2017, 9, 41521-41528.	8.0	25
79	Three dimensional MOF–sponge for fast dynamic adsorption. Physical Chemistry Chemical Physics, 2017, 19, 5746-5752.	2.8	29
80	Fabrication of Transparent Multilayer Circuits by Inkjet Printing. Advanced Materials, 2016, 28, 1420-1426.	21.0	172
81	Rate-dependent interface capture beyond the coffee-ring effect. Scientific Reports, 2016, 6, 24628.	3.3	161
82	Fourâ€Dimensional Screening Antiâ€Counterfeiting Pattern by Inkjet Printed Photonic Crystals. Chemistry - an Asian Journal, 2016, 11, 2680-2685.	3.3	72
83	Inkjet Printing: Fabrication of Transparent Multilayer Circuits by Inkjet Printing (Adv. Mater. 7/2016). Advanced Materials, 2016, 28, 1523-1523.	21.0	4
84	Photonic Crystals: Hydrophilic-Hydrophobic Patterned Molecularly Imprinted Photonic Crystal Sensors for High-Sensitive Colorimetric Detection of Tetracycline (Small 23/2015). Small, 2015, 11, 2828-2828.	10.0	0
85	Bioinspired photonic structures by the reflector layer of firefly lantern for highly efficient chemiluminescence. Scientific Reports, 2015, 5, 12965.	3.3	11
86	Hydrophilic–Hydrophobic Patterned Molecularly Imprinted Photonic Crystal Sensors for Highâ€ S ensitive Colorimetric Detection of Tetracycline. Small, 2015, 11, 2738-2742.	10.0	176
87	Patterning Fluorescent Quantum Dot Nanocomposites by Reactive Inkjet Printing. Small, 2015, 11, 1649-1654.	10.0	117
88	Bio-inspired double-layer structure artificial microreactor with highly efficient light harvesting for photocatalysts. RSC Advances, 2015, 5, 11096-11100.	3.6	4
89	Splitting a Droplet for Femtoliter Liquid Patterns and Single Cell Isolation. ACS Applied Materials & Interfaces, 2015, 7, 9060-9065.	8.0	95
90	Quantum Dots: Patterning Fluorescent Quantum Dot Nanocomposites by Reactive Inkjet Printing (Small 14/2015). Small, 2015, 11, 1614-1614.	10.0	1

#	Article	IF	CITATIONS
91	Highly reproducible SERS arrays directly written by inkjet printing. Nanoscale, 2015, 7, 421-425.	5.6	81
92	Bioâ€Inspired Photonicâ€Crystal Microchip for Fluorescent Ultratrace Detection. Angewandte Chemie - International Edition, 2014, 53, 5791-5795.	13.8	253
93	A Light-Responsive Release Platform by Controlling the Wetting Behavior of Hydrophobic Surface. ACS Nano, 2014, 8, 744-751.	14.6	102
94	Efficient Luminescence of Long Persistent Phosphor Combined with Photonic Crystal. ACS Applied Materials & Interfaces, 2014, 6, 6317-6321.	8.0	33
95	A Strong Integrated Strength and Toughness Artificial Nacre Based on Dopamine Cross-Linked Graphene Oxide. ACS Nano, 2014, 8, 9511-9517.	14.6	347
96	Aquatic plant inspired hierarchical artificial leaves for highly efficient photocatalysis. Journal of Materials Chemistry A, 2013, 1, 7760.	10.3	27
97	Photonic crystal boosted chemiluminescence reaction. Laser and Photonics Reviews, 2013, 7, L39-L43.	8.7	16
98	Hierarchical TiO ₂ photonic crystal spheres prepared by spray drying for highly efficient photocatalysis. Journal of Materials Chemistry A, 2013, 1, 541-547.	10.3	66
99	Ultratough Artificial Nacre Based on Conjugated Crossâ€linked Graphene Oxide. Angewandte Chemie - International Edition, 2013, 52, 3750-3755.	13.8	278
100	Effects of dietary grape seed oil and linseed oil on growth, muscle fatty acid composition and expression of putative Δ5 fatty acyl desaturase in abalone Haliotis discus hannai Ino. Aquaculture, 2013, 406-407, 105-114.	3.5	9
101	Organic dye-sensitized sponge-like TiO ₂ photoanode for dye-sensitized solar cells. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2013, 371, 20120314.	3.4	7
102	Innenrücktitelbild: Ultratough Artificial Nacre Based on Conjugated Cross-linked Graphene Oxide (Angew. Chem. 13/2013). Angewandte Chemie, 2013, 125, 3863-3863.	2.0	1
103	Large-area, crack-free polysilazane-based photonic crystals. Journal of Materials Chemistry, 2012, 22, 5300.	6.7	25
104	An underwater pH-responsive superoleophobic surface with reversibly switchable oil-adhesion. Soft Matter, 2012, 8, 6740.	2.7	89
105	Multilevel Conductance Switching of Memory Device through Photoelectric Effect. Journal of the American Chemical Society, 2012, 134, 20053-20059.	13.7	114
106	Photo-induced amplification of readout contrast in nanoscale data storage. Journal of Materials Chemistry, 2012, 22, 4299.	6.7	26
107	Hierarchical optical antenna: Gold nanoparticle-modified photonic crystal for highly-sensitive label-free DNA detection. Journal of Materials Chemistry, 2012, 22, 8127.	6.7	50
108	Direct-writing colloidal photonic crystal microfluidic chips by inkjet printing for label-free protein detection. Lab on A Chip, 2012, 12, 3089.	6.0	95

#	Article	IF	CITATIONS
109	Bioinspired Layered Composites Based on Flattened Doubleâ€Walled Carbon Nanotubes. Advanced Materials, 2012, 24, 1838-1843.	21.0	137
110	Flexible Au nanoparticle arrays induced metal-enhanced fluorescence towards pressure sensors. Journal of Materials Chemistry, 2011, 21, 5234.	6.7	24
111	Bio-inspired anisotropic micro/nano-surface from a natural stamp: grasshopper wings. Soft Matter, 2011, 7, 7973.	2.7	25
112	Janus interface materials: superhydrophobic air/solid interface and superoleophobic water/solid interface inspired by a lotus leaf. Soft Matter, 2011, 7, 5948.	2.7	203
113	Highly reflective superhydrophobic white coating inspired by poplar leaf hairs toward an effective "cool roof― Energy and Environmental Science, 2011, 4, 3364.	30.8	57
114	Highly effective protein detection for avidin–biotin system based on colloidal photonic crystals enhanced fluoroimmunoassay. Biosensors and Bioelectronics, 2011, 26, 2165-2170.	10.1	60
115	Reversibly phototunable TiO2 photonic crystal modulated by Ag nanoparticles' oxidation/reduction. Applied Physics Letters, 2011, 98, .	3.3	13
116	A white-lighting LED system with a highly efficient thin luminous film. Applied Physics A: Materials Science and Processing, 2010, 98, 85-90.	2.3	6
117	High effective sensors based on photonic crystals. Frontiers of Chemistry in China: Selected Publications From Chinese Universities, 2010, 5, 115-122.	0.4	7
118	The Structural Color of Red Rose Petals and Their Duplicates. Langmuir, 2010, 26, 14885-14888.	3.5	71
119	Enhancement of photochemical hydrogen evolution over Pt-loaded hierarchical titania photonic crystal. Energy and Environmental Science, 2010, 3, 1503.	30.8	139
120	Hierarchically Macro-/Mesoporous Tiâ^'Si Oxides Photonic Crystal with Highly Efficient Photocatalytic Capability. Environmental Science & Technology, 2009, 43, 9425-9431.	10.0	97
121	Nanostructural effects on optical properties of tungsten inverse opal. Applied Physics A: Materials Science and Processing, 2008, 93, 489-493.	2.3	5
122	Ultrasensitive DNA Detection Using Photonic Crystals. Angewandte Chemie - International Edition, 2008, 47, 7258-7262.	13.8	160
123	Energy transfer boosted by photonic crystals with metal film patterns. Applied Physics Letters, 2007, 91, 203516.	3.3	7
124	Coherent control of spontaneous emission by photonic crystals. Chemical Physics Letters, 2007, 444, 287-291.	2.6	16
125	Fabrication of tunable colloid crystals from amine-terminated polyamidoamine dendrimers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 290, 233-238.	4.7	7
126	Recent advances in photonic crystal sensors. Scientia Sinica Chimica, 0, , .	0.4	0

#	Article	IF	CITATIONS
127	Directional Laser From Solutionâ€grown Gratingâ€patterned Perovskite Singleâ€crystal Microdisks. Angewandte Chemie, 0, , .	2.0	0
128	Graphdiyne Nanospheres as a Wettability and Electron Modifier for Enhanced Hydrogenation Catalysis. Angewandte Chemie, 0, , .	2.0	8