
Yunjin Yao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9577895/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Adsorption behavior of methylene blue on carbon nanotubes. Bioresource Technology, 2010, 101, 3040-3046.	9.6	675
2	Synthesis, characterization, and adsorption properties of magnetic Fe3O4@graphene nanocomposite. Chemical Engineering Journal, 2012, 184, 326-332.	12.7	549
3	Magnetic recoverable MnFe2O4 and MnFe2O4-graphene hybrid as heterogeneous catalysts of peroxymonosulfate activation for efficient degradation of aqueous organic pollutants. Journal of Hazardous Materials, 2014, 270, 61-70.	12.4	439
4	Equilibrium and kinetic studies of methyl orange adsorption on multiwalled carbon nanotubes. Chemical Engineering Journal, 2011, 170, 82-89.	12.7	415
5	Sulfate radicals induced from peroxymonosulfate by cobalt manganese oxides (Co x Mn 3â^'x O 4) for Fenton-Like reaction in water. Journal of Hazardous Materials, 2015, 296, 128-137.	12.4	363
6	Fe, Co, Ni nanocrystals encapsulated in nitrogen-doped carbon nanotubes as Fenton-like catalysts for organic pollutant removal. Journal of Hazardous Materials, 2016, 314, 129-139.	12.4	344
7	Magnetic core–shell CuFe2O4@C3N4 hybrids for visible light photocatalysis of Orange II. Journal of Hazardous Materials, 2015, 297, 224-233.	12.4	337
8	Iron encapsulated in boron and nitrogen codoped carbon nanotubes as synergistic catalysts for Fenton-like reaction. Water Research, 2016, 101, 281-291.	11.3	257
9	Hydrothermal Synthesis of Co ₃ O ₄ –Graphene for Heterogeneous Activation of Peroxymonosulfate for Decomposition of Phenol. Industrial & Engineering Chemistry Research, 2012, 51, 14958-14965.	3.7	231
10	Magnetic ZnFe ₂ O ₄ –C ₃ N ₄ Hybrid for Photocatalytic Degradation of Aqueous Organic Pollutants by Visible Light. Industrial & Engineering Chemistry Research, 2014, 53, 17294-17302.	3.7	215
11	Magnetic CoFe ₂ O ₄ –Graphene Hybrids: Facile Synthesis, Characterization, and Catalytic Properties. Industrial & Engineering Chemistry Research, 2012, 51, 6044-6051.	3.7	205
12	Fabrication of Fe3O4/SiO2 core/shell nanoparticles attached to graphene oxide and its use as an adsorbent. Journal of Colloid and Interface Science, 2012, 379, 20-26.	9.4	194
13	Synthesis of porous reduced graphene oxide as metal-free carbon for adsorption and catalytic oxidation of organics in water. Journal of Materials Chemistry A, 2013, 1, 5854.	10.3	187
14	One-pot approach for synthesis of N-doped TiO2/ZnFe2O4 hybrid as an efficient photocatalyst for degradation of aqueous organic pollutants. Journal of Hazardous Materials, 2015, 291, 28-37.	12.4	173
15	Facile Synthesis of Mn ₃ O ₄ –Reduced Graphene Oxide Hybrids for Catalytic Decomposition of Aqueous Organics. Industrial & Engineering Chemistry Research, 2013, 52, 3637-3645.	3.7	171
16	Synthesis of Magnetic Cobalt Nanoparticles Anchored on Graphene Nanosheets and Catalytic Decomposition of Orange II. Industrial & Engineering Chemistry Research, 2013, 52, 17341-17350.	3.7	134
17	Synthesis of "sea urchin―like carbon nanotubes/porous carbon superstructures derived from waste biomass for treatment of various contaminants. Applied Catalysis B: Environmental, 2017, 219, 563-571.	20.2	134
18	Enhanced photo-Fenton-like process over Z-scheme CoFe2O4/g-C3N4 Heterostructures under natural indoor light. Environmental Science and Pollution Research, 2016, 23, 21833-21845.	5.3	124

Yunjin Yao

#	Article	IF	CITATIONS
19	Facile synthesis of magnetic ZnFe2O4–reduced graphene oxide hybrid and its photo-Fenton-like behavior under visible iradiation. Environmental Science and Pollution Research, 2014, 21, 7296-7306.	5.3	94
20	Metal-free catalysts of graphitic carbon nitride–covalent organic frameworks for efficient pollutant destruction in water. Journal of Colloid and Interface Science, 2019, 554, 376-387.	9.4	69
21	Electronic structure modulation of covalent organic frameworks by single-atom Fe doping for enhanced oxidation of aqueous contaminants. Chemical Engineering Science, 2019, 209, 115211.	3.8	69
22	Heteroatoms doped metal iron–polyvinylidene fluoride (PVDF) membrane for enhancing oxidation of organic contaminants. Journal of Hazardous Materials, 2017, 338, 265-275.	12.4	62
23	Activation of persulfates by catalytic nickel nanoparticles supported on N-doped carbon nanofibers for degradation of organic pollutants in water. Journal of Colloid and Interface Science, 2018, 529, 100-110.	9.4	53
24	Nonprecious bimetallic Fe, Mo-embedded N-enriched porous biochar for efficient oxidation of aqueous organic contaminants. Journal of Hazardous Materials, 2022, 422, 126776.	12.4	53
25	Strontium-doped perovskite oxide La1-xSrxMnO3 (x = 0, 0.2, 0.6) as a highly efficient electrocatalyst for nonaqueous Li-O2 batteries. Electrochimica Acta, 2017, 232, 296-302.	5.2	52
26	NiO encapsulated in N-doped carbon nanotubes for catalytic reduction of highly toxic hexavalent chromium. Applied Surface Science, 2018, 440, 421-431.	6.1	44
27	One-pot hydrothermal synthesis of Co(OH)2 nanoflakes on graphene sheets and their fast catalytic oxidation of phenol in liquid phase. Journal of Colloid and Interface Science, 2013, 402, 230-236.	9.4	43
28	Nitrogen-doped carbon encapsulating molybdenum carbide and nickel nanostructures loaded with PVDF membrane for hexavalent chromium reduction. Chemical Engineering Journal, 2018, 344, 535-544.	12.7	40
29	Tannic acid-Fe coordination derived Fe/N-doped carbon hybrids for catalytic oxidation processes. Applied Surface Science, 2019, 489, 44-54.	6.1	40
30	Synthesis and characterization of iron-nitrogen-doped biochar catalysts for organic pollutant removal and hexavalent chromium reduction. Journal of Colloid and Interface Science, 2022, 610, 334-346.	9.4	34
31	Iron encapsulated in 3D N-doped carbon nanotube/porous carbon hybrid from waste biomass for enhanced oxidative activity. Environmental Science and Pollution Research, 2017, 24, 7679-7692.	5.3	30
32	Zn-MoS2 nanocatalysts anchored in porous membrane for accelerated catalytic conversion of water contaminants. Chemical Engineering Journal, 2020, 398, 125455.	12.7	29
33	Phase change on stainless-steel mesh for promoting sulfate radical formation via peroxymonosulfate oxidation. Applied Catalysis B: Environmental, 2020, 278, 119333.	20.2	25
34	Fe, Cu-coordinated ZIF-derived bimetal encapsulated N‑doped carbon nanotube for efficient remediation of various aqueous pollutants. Chemical Engineering Journal, 2021, 426, 131801.	12.7	25
35	LiNi1/3Co1/3Mn1/3O2 coated by Al2O3 from urea homogeneous precipitation method: improved Li storage performance and mechanism exploring. Journal of Solid State Electrochemistry, 2015, 19, 1523-1533.	2.5	21
36	Removal of simulated radionuclide Ce(III) from aqueous solution by as-synthesized chrysotile nanotubes. Chemical Engineering Journal, 2012, 213, 22-30.	12.7	19

Yunjin Yao

#	Article	IF	CITATIONS
37	Nonprecious bimetallic (Mo, Fe)-N/C nanostructures loaded on PVDF membrane for toxic CrVI reduction from water. Journal of Hazardous Materials, 2020, 389, 121844.	12.4	19
38	Supported Ionic-Liquid "Semi-Heterogeneous Catalyst― An Interfacial Chemical Study. Journal of Physical Chemistry C, 2013, 117, 7026-7038.	3.1	18
39	Nano-FeO embedded in N-doped carbon architectures for enhanced oxidation of aqueous contaminants. Chemical Engineering Science, 2020, 227, 115941.	3.8	17
40	Different types of MnO2 recovered from spent LiMn2O4 batteries and their application in electrochemical capacitors. Journal of Materials Science, 2013, 48, 2512-2519.	3.7	16
41	Conformational Change of Bovine Serum Albumin Molecules at Neutral pH in Ultra-Diluted Aqueous Solutions. Journal of Physical Chemistry B, 2014, 118, 12207-12214.	2.6	15
42	Spectral Inspections on Molecular Configurations of Nile Blue A Adsorbed on the Elementary Clay Sheets. Journal of Physical Chemistry B, 2015, 119, 13302-13308.	2.6	15
43	Characterization and reactivity of γ-Al2O3 supported Pd–Ni bimetallic nanocatalysts for selective hydrogenation of cyclopentadiene. Chinese Chemical Letters, 2015, 26, 709-713.	9.0	15
44	Mass Transfer Performance for Low SO ₂ Absorption into Aqueous <i>N</i> , <i>N</i> â€2-Bis(2-hydroxypropyl)piperazine Solution in a Î,-Ring Packed Column. Industrial & Engineering Chemistry Research, 2014, 53, 4462-4468.	3.7	13
45	Magnetic Recoverable F-N Co-Doped ZnFe ₂ O ₄ /C/TiO ₂ Nanocomposites with UV-Vis Light Photocatalytic Activity. Environmental Engineering Science, 2018, 35, 37-45.	1.6	12
46	Pyrite-embedded porous carbon nanocatalysts assembled in polyvinylidene difluoride membrane for organic pollutant oxidation. Journal of Colloid and Interface Science, 2022, 608, 2942-2954.	9.4	9
47	Hydrogen Storage Using Carbon Nanotubes. , 0, , .		3
48	CVD synthesis and purification of multi-walled carbon nanotubes. , 2008, , .		2
49	CVD synthesis and hydrogen storage properties of multi-walled carbon nanotubes. , 2008, , .		2
50	Studies of the equilibrium of the adsorption of Cu(II) onto as-produced and purified carbon nanotubes. , 2010, , .		0