
Raquel P Herrera

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9577837/publications.pdf Version: 2024-02-01

PAQUEL D HEDDEDA

#	Article	IF	CITATIONS
1	Catalytic Enantioselective Friedel-Crafts Alkylation of Indoles with Nitroalkenes by Using a Simple Thiourea Organocatalyst. Angewandte Chemie - International Edition, 2005, 44, 6576-6579.	13.8	429
2	Asymmetric organocatalysis in total synthesis – a trial by fire. Natural Product Reports, 2010, 27, 1138.	10.3	290
3	Catalytic Enantioselective Hydrophosphonylation of Aldehydes and Imines. Advanced Synthesis and Catalysis, 2008, 350, 1195-1208.	4.3	241
4	Catalytic Enantioselective Azaâ€Henry Reactions. European Journal of Organic Chemistry, 2009, 2009, 2401-2420.	2.4	186
5	Phase-Transfer-Catalyzed Asymmetric Aza-Henry Reaction UsingN-Carbamoyl Imines Generated In Situ from α-Amido Sulfones. Angewandte Chemie - International Edition, 2005, 44, 7975-7978.	13.8	170
6	Enantioselective Organocatalytic Diels-Alder Reactions. Synthesis, 2010, 2010, 1-26.	2.3	154
7	Asymmetric organocatalytic synthesis of \hat{I}^3 -nitrocarbonyl compounds through Michael and Domino reactions. Tetrahedron: Asymmetry, 2010, 21, 2561-2601.	1.8	151
8	Crossed Intramolecular Rauhutâ´'Currier-Type Reactions via Dienamine Activation. Organic Letters, 2009, 11, 4116-4119.	4.6	144
9	Enantioselective aza-Henry reaction using cinchona organocatalysts. Tetrahedron, 2006, 62, 375-380.	1.9	138
10	Direct Access to Enantiomerically Enriched α-Amino Phosphonic Acid Derivatives by Organocatalytic Asymmetric Hydrophosphonylation of Imines. Journal of Organic Chemistry, 2006, 71, 6269-6272.	3.2	137
11	Organocatalyzed Strecker reactions. Tetrahedron, 2009, 65, 1219-1234.	1.9	130
12	Enantioselective α- and γ-Alkylation of α,β-Unsaturated Aldehydes Using Dienamine Activation. Organic Letters, 2011, 13, 70-73.	4.6	119
13	Organocatalytic Enantioselective Henry Reactions. Symmetry, 2011, 3, 220-245.	2.2	116
14	Organocatalytic Enantioselective Decarboxylative Addition of Malonic Half Thioesters to Imines. Advanced Synthesis and Catalysis, 2007, 349, 1037-1040.	4.3	112
15	Organocatalytic Conjugate Addition of FormaldehydeN,N-Dialkylhydrazones to β,γ-Unsaturated α-Keto Esters. Organic Letters, 2007, 9, 3303-3306.	4.6	104
16	Main Avenues in Gold Coordination Chemistry. Chemical Reviews, 2021, 121, 8311-8363.	47.7	99
17	On the Mechanism of Arene-Catalyzed Lithiation: The Role of Arene Dianions—Naphthalene Radical Anion versus Naphthalene Dianion. Chemistry - A European Journal, 2002, 8, 2574.	3.3	97
18	lsatin as a Strategic Motif for Asymmetric Catalysis. ChemCatChem, 2013, 5, 2131-2148.	3.7	92

#	Article	IF	CITATIONS
19	Phase Transfer Catalyzed Enantioselective Strecker Reactions of α-Amido Sulfones with Cyanohydrins. Journal of Organic Chemistry, 2006, 71, 9869-9872.	3.2	81
20	Phase-Transfer-Catalyzed Enantioselective Mannich Reaction of Malonates with α-Amido Sulfones. Advanced Synthesis and Catalysis, 2006, 348, 2043-2046.	4.3	74
21	On the mechanism of the naphthalene-catalysed lithiation: the role of the naphthalene dianion. Tetrahedron Letters, 2001, 42, 3455-3458.	1.4	72
22	The Role of the Indole in Important Organocatalytic Enantioselective Friedel-Crafts Alkylation Reactions. Current Organic Chemistry, 2009, 13, 1585-1609.	1.6	65
23	Enhanced Efficiency of Thiourea Catalysts by External BrÃ,nsted Acids in the Friedel–Crafts Alkylation of Indoles. European Journal of Organic Chemistry, 2011, 2011, 3700-3705.	2.4	65
24	Metal–organic frameworks (MOFs) bring new life to hydrogen-bonding organocatalysts in confined spaces. CrystEngComm, 2016, 18, 3985-3995.	2.6	54
25	Exploiting Molecular Selfâ€Assembly: From Ureaâ€Based Organocatalysts to Multifunctional Supramolecular Gels. Chemistry - A European Journal, 2014, 20, 10720-10731.	3.3	50
26	Organocatalytic enantioselective hydrophosphonylation of aldehydes. Organic and Biomolecular Chemistry, 2014, 12, 1258-1264.	2.8	47
27	Anticancer properties of gold complexes with biologically relevant ligands. Pure and Applied Chemistry, 2019, 91, 247-269.	1.9	45
28	Thiourea catalyzed organocatalytic enantioselective Michael addition of diphenyl phosphite to nitroalkenes. Organic and Biomolecular Chemistry, 2011, 9, 2777.	2.8	43
29	A new approach for the synthesis of bisindoles through AgOTf as catalyst. Beilstein Journal of Organic Chemistry, 2014, 10, 2206-2214.	2.2	42
30	Trifunctional Squaramide Catalyst for Efficient Enantioselective Henry Reaction Activation. Advanced Synthesis and Catalysis, 2016, 358, 1801-1809.	4.3	41
31	Organocatalytic Enantioselective Synthesis of 1,4â€Dihydropyridines. Advanced Synthesis and Catalysis, 2017, 359, 2161-2175.	4.3	33
32	Self-assembled fibrillar networks of a multifaceted chiral squaramide: supramolecular multistimuli-responsive alcogels. Soft Matter, 2016, 12, 4361-4374.	2.7	32
33	Hydrogen Bonding and Internal or External Lewis or BrÃ,nsted Acid Assisted (Thio)urea Catalysts. European Journal of Organic Chemistry, 2020, 2020, 1057-1068.	2.4	32
34	Aliphatic organolithiums by fluorine–lithium exchange: n-octyllithium. Tetrahedron Letters, 2003, 44, 5025-5027.	1.4	31
35	A Broadened Scope for the Use of Hydrazones as Neutral Nucleophiles in the Presence of H-Bonding Organocatalysts. Synlett, 2006, 2006, 239-242.	1.8	31
36	Regulatory parameters of self-healing alginate hydrogel networks prepared via mussel-inspired dynamic chemistry. New Journal of Chemistry, 2016, 40, 8493-8501.	2.8	31

#	Article	IF	CITATIONS
37	Enantioselective Organocatalyzed Synthesis of 2-Amino-3-cyano-4H-chromene Derivatives. Symmetry, 2015, 7, 1519-1535.	2.2	30
38	Gold Catalyzed Multicomponent Reactions beyond A3 Coupling. Molecules, 2018, 23, 2255.	3.8	29
39	Synthesis of α-Hydrazino Ketones via Regio- and Stereoselective Electrophilic Amination of Manganese Enolates and Enamines. Journal of Organic Chemistry, 2004, 69, 8525-8528.	3.2	28
40	New Modes of Reactivity in the Threshold of the Reduction Potential in Solution. Alkylation of Lithium PAH (Polycyclic Aromatic Hydrocarbon) Dianions by Primary Fluoroalkanes: A Reaction Pathway Complementing the Classical Birch Reductive Alkylation. Chemistry - A European Journal, 2007, 13, 10096-10107.	3.3	28
41	A Friedel–Crafts alkylation mechanism using an aminoindanol-derived thiourea catalyst. Organic and Biomolecular Chemistry, 2014, 12, 4503-4510.	2.8	28
42	Proline bulky substituents consecutively act as steric hindrances and directing groups in a Michael/Conia-ene cascade reaction under synergistic catalysis. Chemical Science, 2019, 10, 4107-4115.	7.4	28
43	Ultrasound-assisted multicomponent synthesis of 4H-pyrans in water and DNA binding studies. Scientific Reports, 2020, 10, 11594.	3.3	28
44	New Organocatalytic Asymmetric Synthesis of Highly Substituted Chiral 2-Oxospiro-[indole-3,4′- (1′,4′-dihydropyridine)] Derivatives. Molecules, 2015, 20, 15807-15826.	3.8	27
45	Asymmetric Organocatalytic Synthesis of Substituted Chiral 1,4-Dihydropyridine Derivatives. Journal of Organic Chemistry, 2017, 82, 5516-5523.	3.2	27
46	The fluxional amine gold(iii) complex as an excellent catalyst and precursor of biologically active acyclic carbenes. Dalton Transactions, 2015, 44, 9052-9062.	3.3	26
47	Primary alkyl fluorides as regioselective alkylating reagents of lithium arene dianions. Easy prediction of regioselectivity by MO calculations on the dianion. Tetrahedron Letters, 2003, 44, 1313-1316.	1.4	25
48	H-Bonding Organocatalysed Friedel-Crafts Alkylation of Aromatic and Heteroaromatic Systems with Nitroolefins. Synlett, 2004, 2004, 2374-2378.	1.8	25
49	Direct Substitution of Alcohols in Pure Water by BrÃ,nsted Acid Catalysis. Molecules, 2017, 22, 574.	3.8	25
50	"Push–Pull π+/π–―(PPππ) Systems in Catalysis. ACS Catalysis, 2017, 7, 6430-6439.	11.2	24
51	On the dichotomy of the SN2/ET reaction pathways: an apparent SN2 reactivity in the reaction of naphthalene dianion with alkyl fluorides. Tetrahedron Letters, 2003, 44, 1309-1312.	1.4	23
52	The aminoindanol core as a key scaffold in bifunctional organocatalysts. Beilstein Journal of Organic Chemistry, 2016, 12, 505-523.	2.2	22
53	Hydrogen Bonding Networks in Chiral Thiourea Organocatalysts: Evidence on the Importance of the Aminoindanol Moiety. Crystal Growth and Design, 2016, 16, 5091-5099.	3.0	22
54	Synthesis of interesting β-nitrohydrazides through a thiourea organocatalysed aza-Michael addition. RSC Advances, 2014, 4, 9856-9865.	3.6	21

#	Article	IF	CITATIONS
55	Synthesis of luminescent squaramide monoesters: cytotoxicity and cell imaging studies in HeLa cells. RSC Advances, 2016, 6, 14171-14177.	3.6	21
56	Organocatalytic Hydrophosphonylation Reaction of Carbonyl Groups. Chemical Record, 2017, 17, 833-840.	5.8	21
57	Asymmetric Fluorination Reactions promoted by Chiral Hydrogen Bondingâ€based Organocatalysts. Advanced Synthesis and Catalysis, 2020, 362, 5275-5300.	4.3	21
58	Diarylprolinol Derivatives in Organocatalysis From Another Point of View: Structural Aspects. Current Organic Chemistry, 2011, 15, 2311-2327.	1.6	20
59	One-pot synthesis of unsymmetrical squaramides. RSC Advances, 2015, 5, 33450-33462.	3.6	20
60	Organocatalytic Transfer Hydrogenation and Hydrosilylation Reactions. Topics in Current Chemistry, 2016, 374, 29.	5.8	20
61	Gold(I)â€Mediated Thiourea Organocatalyst Activation: A Synergic Effect for Asymmetric Catalysis. ChemCatChem, 2017, 9, 1313-1321.	3.7	19
62	Simple iodoalkyne-based organocatalysts for the activation of carbonyl compounds. Organic and Biomolecular Chemistry, 2020, 18, 1594-1601.	2.8	19
63	Uncatalyzed Streckerâ€Type Reaction of <i>N</i> , <i>N</i> â€Dialkylhydrazones in Pure Water. European Journal of Organic Chemistry, 2008, 2008, 3457-3460.	2.4	18
64	Optimizing the Accuracy and Computational Cost in Theoretical Squaramide Catalysis: The Henry Reaction. Chemistry - A European Journal, 2017, 23, 15336-15347.	3.3	18
65	Thioureaâ€Catalyzed Addition of Indoles to Aliphatic β,γâ€Unsaturated αâ€Ketoesters. Asian Journal of Organic Chemistry, 2015, 4, 884-889.	2.7	17
66	Thiolate Bridged Gold(I)–NHC Catalysts: New Approach for Catalyst Design and its Application to Trapping Catalytic Intermediates. Chemistry - A European Journal, 2019, 25, 15837-15845.	3.3	17
67	Bioactive and luminescent indole and isatin based gold(i) derivatives. Dalton Transactions, 2019, 48, 3098-3108.	3.3	17
68	Efficient Gold(I) Acyclic Diaminocarbenes for the Synthesis of Propargylamines and Indolizines. ACS Omega, 2018, 3, 9805-9813.	3.5	16
69	Enantioselective Rauhut-Currier-Type Cyclizations via Dienamine Activation: Scope and Mechanism. Synthesis, 2013, 45, 1016-1028.	2.3	15
70	Squaramides with cytotoxic activity against human gastric carcinoma cells HGC-27: synthesis and mechanism of action. MedChemComm, 2016, 7, 550-561.	3.4	14
71	Highly active group 11 metal complexes with α-hydrazidophosphonate ligands. Dalton Transactions, 2017, 46, 13745-13755.	3.3	13
72	Synthesis, structural determination and antimicrobial evaluation of two novel CoII and ZnII halogenometallates as efficient catalysts for the acetalization reaction of aldehydes. Chemistry Central Journal, 2018, 12, 24.	2.6	13

#	Article	IF	CITATIONS
73	First Organocatalytic Asymmetric Synthesis of 1-Benzamido-1,4-Dihydropyridine Derivatives. Molecules, 2018, 23, 2692.	3.8	13
74	Synthesis of New Thiourea-Metal Complexes with Promising Anticancer Properties. Molecules, 2021, 26, 6891.	3.8	13
75	Uncatalyzed Threeâ€Component Synthesis of αâ€Hydrazido Phosphonates. European Journal of Organic Chemistry, 2010, 2010, 1450-1454.	2.4	12
76	Fluoride Anion Recognition by a Multifunctional Urea Derivative: An Experimental and Theoretical Study. Sensors, 2016, 16, 658.	3.8	12
77	Hydrothermal synthesis of chiral inorganic-organic Coll complex: Structural, thermal and catalytic evaluation. Journal of Molecular Structure, 2018, 1165, 356-362.	3.6	10
78	Horizons in Asymmetric Organocatalysis: En Route to the Sustainability and New Applications. Catalysts, 2022, 12, 101.	3.5	10
79	Organocatalyzed Enantioselective Aldol and Henry Reactions Starting from Benzylic Alcohols. Advanced Synthesis and Catalysis, 2018, 360, 124-129.	4.3	9
80	Crystallisation, thermal analysis and acetal protection activity of new layered Zn(<scp>ii</scp>) hybrid polymorphs. CrystEngComm, 2016, 18, 5365-5374.	2.6	7
81	Asymmetric Organocatalyzed Azaâ€Henry Reaction of Hydrazones: Experimental and Computational Studies. Chemistry - A European Journal, 2020, 26, 5469-5478.	3.3	7
82	Ferrocenyl Gold Complexes as Efficient Catalysts. European Journal of Inorganic Chemistry, 2022, 2022, .	2.0	7
83	Towards the Synthesis of Highly Functionalized Chiral α-Amino Nitriles by Aminative Cyanation and Their Synthetic Applications. European Journal of Organic Chemistry, 2006, 2006, 207-217.	2.4	6
84	Guanidine Motif in Biologically Active Peptides. Australian Journal of Chemistry, 2014, 67, 965.	0.9	6
85	Urea Activation by an External BrÃ,nsted Acid: Breaking Self-Association and Tuning Catalytic Performance. Catalysts, 2018, 8, 305.	3.5	6
86	Synthesis and supramolecular self-assembly of glutamic acid-based squaramides. Beilstein Journal of Organic Chemistry, 2018, 14, 2065-2073.	2.2	6
87	First aromatic amine organocatalysed activation of α,β-unsaturated ketones. New Journal of Chemistry, 2019, 43, 12233-12240.	2.8	6
88	Functionalization of π-activated alcohols by trapping carbocations in pure water under smooth conditions. Arabian Journal of Chemistry, 2020, 13, 1866-1873.	4.9	6
89	Unconventional Gold-Catalyzed One-Pot/Multicomponent Synthesis of Propargylamines Starting from Benzyl Alcohols. Catalysts, 2021, 11, 513.	3.5	6
90	Novel ureido-dihydropyridine scaffolds as theranostic agents. Bioorganic Chemistry, 2020, 105, 104364.	4.1	5

Raquel P Herrera

#	Article	IF	CITATIONS
91	Synergistic Catalysis: Asymmetric Synthesis of Cyclopentanes Bearing Four Stereogenic Centers. Synthesis, 2016, 49, 167-174.	2.3	4
92	Synthesis, structural determination and catalytic study of a new 2-D chloro-substituted zinc phosphate, (C8N2H2O)[ZnCl(PO3(OH))]2. Journal of Molecular Structure, 2020, 1202, 127216.	3.6	4
93	Selfâ€Assembly of Hollow Organic Nanotubes Driven by Arene Regioisomerism. ChemPlusChem, 2020, 85, 2372-2375.	2.8	4
94	Sulfonamide as amide isostere for fine-tuning the gelation properties of physical gels. RSC Advances, 2020, 10, 11481-11492.	3.6	4
95	Single-Crystal-to-Single-Crystal Transformation and Catalytic Properties of New Hybrid Perhalidometallates. Catalysts, 2021, 11, 758.	3.5	4
96	Investigation of Squaramide Catalysts in the Aldol Reaction en Route to Funapide. European Journal of Organic Chemistry, 0, , .	2.4	3
97	Editorial [Hot Topic: Fundamentals in Organocatalysis. Past, Present and Future (Guest Editor: Raquel) Tj ETQq1	1 0.78431 1.6	4 rgBT /Over
98	Organocatalytic Transfer Hydrogenation and Hydrosilylation Reactions. Topics in Current Chemistry Collections, 2016, , 105-144.	0.5	2
99	Aliphatic Organolithiums by Fluorine—Lithium Exchange: n-Octyllithium ChemInform, 2003, 34, no.	0.0	0
100	Synthesis of ?-Hydrazino Ketones via Regio- and Stereoselective Electrophilic Amination of Manganese Enolates and Enamines ChemInform, 2005, 36, no.	0.0	0
101	Catalytic Enantioselective Friedel—Crafts Alkylation of Indoles with Nitroalkenes by Using a Simple Thiourea Organocatalyst ChemInform, 2006, 37, no.	0.0	0
102	Organocatalyzed Michael Addition Reaction by Novel (2R,3aS,7aS)-Octa-hydroindole-2-carboxylic Acid, a New Fused Proline. Synlett, 2011, 2011, 249-253.	1.8	0
103	Frontispiece: Optimizing the Accuracy and Computational Cost in Theoretical Squaramide Catalysis: The Henry Reaction. Chemistry - A European Journal, 2017, 23, .	3.3	0