
Daniel N Congreve

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9577230/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Halide Mixing Inhibits Exciton Transport in Two-dimensional Perovskites Despite Phase Purity. ACS Energy Letters, 2022, 7, 358-365.	17.4	12
2	Triplet fusion upconversion nanocapsules for volumetric 3D printing. Nature, 2022, 604, 474-478.	27.8	100
3	Perovskite light-emitting diodes. Nature Electronics, 2022, 5, 203-216.	26.0	268
4	Mapping the Trapâ€State Landscape in 2D Metalâ€Halide Perovskites Using Transient Photoluminescence Microscopy. Advanced Optical Materials, 2021, 9, 2001875.	7.3	15
5	Passive frequency conversion of ultraviolet images into the visible using perovskite nanocrystals. Journal of Optics (United Kingdom), 2021, 23, 054001.	2.2	4
6	Charge Carrier Localization in Doped Perovskite Nanocrystals Enhances Radiative Recombination. Journal of the American Chemical Society, 2021, 143, 8647-8653.	13.7	43
7	Efficient blue perovskite LEDs from quantum confined structures. Science China Chemistry, 2020, 63, 3-4.	8.2	1
8	Light emission from perovskite materials. APL Materials, 2020, 8, 070401.	5.1	12
9	Molecular Engineering of Chromophores to Enable Triplet–Triplet Annihilation Upconversion. Journal of the American Chemical Society, 2020, 142, 19917-19925.	13.7	42
10	Manganese Doping Stabilizes Perovskite Light-Emitting Diodes by Reducing Ion Migration. ACS Applied Electronic Materials, 2020, 2, 1522-1528.	4.3	37
11	An energetics perspective on why there are so few triplet–triplet annihilation emitters. Journal of Materials Chemistry C, 2020, 8, 10816-10824.	5.5	32
12	Anthracene Diphosphate Ligands for CdSe Quantum Dots; Molecular Design for Efficient Upconversion. Chemistry of Materials, 2020, 32, 1461-1466.	6.7	46
13	Quantifying mobile ions and electronic defects in perovskite-based devices with temperature-dependent capacitance measurements: Frequency vs time domain. Journal of Chemical Physics, 2020, 152, 044202.	3.0	46
14	Sensitization of silicon by singlet exciton fission in tetracene. Nature, 2019, 571, 90-94.	27.8	221
15	Lead Halide Perovskites Unlock Thin Film Upconversion. Matter, 2019, 1, 553-555.	10.0	3
16	Discovery of blue singlet exciton fission molecules via a high-throughput virtual screening and experimental approach. Journal of Chemical Physics, 2019, 151, 121102.	3.0	24
17	Photoredox catalysis using infrared light via triplet fusion upconversion. Nature, 2019, 565, 343-346.	27.8	447
18	Photon Upconversion in Aqueous Nanodroplets. Journal of the American Chemical Society, 2019, 141, 9180-9184.	13.7	46

2

DANIEL N CONGREVE

#	Article	IF	CITATIONS
19	Annihilator dimers enhance triplet fusion upconversion. Chemical Science, 2019, 10, 3969-3975.	7.4	51
20	Mn ²⁺ Doping Enhances the Brightness, Efficiency, and Stability of Bulk Perovskite Light-Emitting Diodes. ACS Photonics, 2019, 6, 1111-1117.	6.6	61
21	Tunable Emission from Triplet Fusion Upconversion in Diketopyrrolopyrroles. Journal of the American Chemical Society, 2019, 141, 3777-3781.	13.7	66
22	Reducing Architecture Limitations for Efficient Blue Perovskite Lightâ€Emitting Diodes. Advanced Materials, 2018, 30, e1706226.	21.0	181
23	Efficient Blue and White Perovskite Light-Emitting Diodes via Manganese Doping. Joule, 2018, 2, 2421-2433.	24.0	308
24	Tunable Light-Emitting Diodes Utilizing Quantum-Confined Layered Perovskite Emitters. ACS Photonics, 2017, 4, 476-481.	6.6	124
25	Triplet Harvesting from Intramolecular Singlet Fission in Polytetracene. Advanced Materials, 2017, 29, 1701416.	21.0	70
26	Solid-state infrared-to-visible upconversion sensitized by colloidal nanocrystals. Nature Photonics, 2016, 10, 31-34.	31.4	418
27	Spin-dependent charge transfer state design rules in organic photovoltaics. Nature Communications, 2015, 6, 6415.	12.8	83
28	Nanoscale transport of charge-transfer states in organic donor–acceptor blends. Nature Materials, 2015, 14, 1130-1134.	27.5	159
29	The Role of Electron–Hole Separation in Thermally Activated Delayed Fluorescence in Donor–Acceptor Blends. Journal of Physical Chemistry C, 2015, 119, 25591-25597.	3.1	45
30	Solid state photon upconversion utilizing thermally activated delayed fluorescence molecules as triplet sensitizer. Applied Physics Letters, 2015, 107, .	3.3	80
31	Singlet fission efficiency in tetracene-based organic solar cells. Applied Physics Letters, 2014, 104, .	3.3	79
32	A transferable model for singlet-fission kinetics. Nature Chemistry, 2014, 6, 492-497.	13.6	402
33	Nanostructured Singlet Fission Photovoltaics Subject to Triplet harge Annihilation. Advanced Materials, 2014, 26, 1366-1371.	21.0	51
34	Energy harvesting of non-emissive triplet excitons in tetracene by emissive PbS nanocrystals. Nature Materials, 2014, 13, 1039-1043.	27.5	235
35	External Quantum Efficiency Above 100% in a Singlet-Exciton-Fission–Based Organic Photovoltaic Cell. Science, 2013, 340, 334-337.	12.6	783
36	Singlet Exciton Fission Photovoltaics. Accounts of Chemical Research, 2013, 46, 1300-1311.	15.6	271

#	Article	IF	CITATIONS
37	Slow light enhanced singlet exciton fission solar cells with a 126% yield of electrons per photon. Applied Physics Letters, 2013, 103, .	3.3	72
38	Enhanced external quantum efficiency in an organic photovoltaic cell via singlet fission exciton sensitizer. Applied Physics Letters, 2012, 101, 113304.	3.3	97
39	Influence of oxygen on defect densities in nanocrystalline Si. Journal of Non-Crystalline Solids, 2012, 358, 2071-2073.	3.1	0