Feihu Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9576855/publications.pdf

Version: 2024-02-01

88	6,205	40	75
papers	citations	h-index	g-index
89	89	89	2914
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Secure quantum key distribution with realistic devices. Reviews of Modern Physics, 2020, 92, .	45.6	733
2	An integrated space-to-ground quantum communication network over 4,600 kilometres. Nature, 2021, 589, 214-219.	27.8	415
3	Entanglement-based secure quantum cryptography over 1,120 kilometres. Nature, 2020, 582, 501-505.	27.8	350
4	Finite-key analysis for measurement-device-independent quantum key distribution. Nature Communications, 2014, 5, 3732.	12.8	303
5	Experimental Demonstration of Polarization Encoding Measurement-Device-Independent Quantum Key Distribution. Physical Review Letters, 2014, 112, 190503.	7.8	272
6	Concise security bounds for practical decoy-state quantum key distribution. Physical Review A, 2014, 89, .	2.5	248
7	Experimental demonstration of phase-remapping attack in a practical quantum key distribution system. New Journal of Physics, 2010, 12, 113026.	2.9	247
8	An integrated silicon photonic chip platform for continuous-variable quantum key distribution. Nature Photonics, 2019, 13, 839-842.	31.4	196
9	Photon-efficient imaging with a single-photon camera. Nature Communications, 2016, 7, 12046.	12.8	169
10	Continuous-variable measurement-device-independent quantum key distribution. Physical Review A, 2014, 89, .	2.5	164
11	Protocol choice and parameter optimization in decoy-state measurement-device-independent quantum key distribution. Physical Review A, 2014, 89, .	2.5	159
12	Ultrafast quantum random number generation based on quantum phase fluctuations. Optics Express, 2012, 20, 12366.	3.4	158
13	Postprocessing for quantum random-number generators: Entropy evaluation and randomness extraction. Physical Review A, 2013, 87, .	2.5	153
14	Large scale quantum key distribution: challenges and solutions [Invited]. Optics Express, 2018, 26, 24260.	3.4	148
15	Single-photon imaging over 200  km. Optica, 2021, 8, 344.	9.3	148
16	Practical aspects of measurement-device-independent quantum key distribution. New Journal of Physics, 2013, 15, 113007.	2.9	128
17	Single-photon computational 3D imaging at 45  km. Photonics Research, 2020, 8, 1532.	7.0	119
18	Silicon photonic transmitter for polarization-encoded quantum key distribution. Optica, 2016, 3, 1274.	9.3	110

#	Article	IF	CITATIONS
19	High-Speed Measurement-Device-Independent Quantum Key Distribution with Integrated Silicon Photonics. Physical Review X, 2020, 10 , .	8.9	102
20	Experimental quantum repeater without quantum memory. Nature Photonics, 2019, 13, 644-648.	31.4	93
21	Experimental Quantum Switching for Exponentially Superior Quantum Communication Complexity. Physical Review Letters, 2019, 122, 120504.	7.8	82
22	Super-resolution single-photon imaging at 8.2 kilometers. Optics Express, 2020, 28, 4076.	3.4	78
23	Experimental Demonstration of High-Rate Measurement-Device-Independent Quantum Key Distribution over Asymmetric Channels. Physical Review Letters, 2019, 122, 160501.	7.8	72
24	Quantum-memory-assisted multi-photon generation for efficient quantum information processing. Optica, 2017, 4, 1034.	9.3	71
25	Distributed quantum phase estimation with entangled photons. Nature Photonics, 2021, 15, 137-142.	31.4	71
26	Experimental quantum key distribution with source flaws. Physical Review A, 2015, 92, .	2.5	69
27	Experimental quantum fingerprinting with weak coherent pulses. Nature Communications, 2015, 6, 8735.	12.8	65
28	Non–line-of-sight imaging over 1.43 km. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	64
29	Computational multi-depth single-photon imaging. Optics Express, 2016, 24, 1873.	3.4	60
30	Long distance measurement-device-independent quantum key distribution with entangled photon sources. Applied Physics Letters, 2013, 103, .	3.3	56
31	Revealing hidden scenes by photon-efficient occlusion-based opportunistic active imaging. Optics Express, 2018, 26, 9945.	3.4	56
32	Efficient generation and characterization of spectrally factorable biphotons. Optics Express, 2017, 25, 7300.	3.4	55
33	Effect of source tampering in the security of quantum cryptography. Physical Review A, 2015, 92, .	2.5	53
34	Exploiting Occlusion in Non-Line-of-Sight Active Imaging. IEEE Transactions on Computational Imaging, 2018, 4, 419-431.	4.4	50
35	Observation of Quantum Fingerprinting Beating the Classical Limit. Physical Review Letters, 2016, 116, 240502.	7.8	48
36	Insecurity of Detector-Device-Independent Quantum Key Distribution. Physical Review Letters, 2016, 117, 250505.	7.8	46

#	Article	IF	CITATIONS
37	Measurement-Device-Independent Quantum Cryptography. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21, 148-158.	2.9	45
38	Discrete and continuous variables for measurement-device-independent quantum cryptography. Nature Photonics, 2015, 9, 772-773.	31.4	44
39	Towards satellite-based quantum-secure time transfer. Nature Physics, 2020, 16, 848-852.	16.7	43
40	Experimental fast quantum random number generation using high-dimensional entanglement with entropy monitoring. Optica, 2016, 3, 1266.	9.3	42
41	Asymmetric Protocols for Scalable High-Rate Measurement-Device-Independent Quantum Key Distribution Networks. Physical Review X, 2019, 9, .	8.9	41
42	W-state Analyzer and Multi-party Measurement-device-independent Quantum Key Distribution. Scientific Reports, 2015, 5, 17449.	3.3	36
43	Measurement-device-independent quantum communication with an untrusted source. Physical Review A, 2015, 92, .	2.5	34
44	Non-Line-of-Sight Imaging with Picosecond Temporal Resolution. Physical Review Letters, 2021, 127, 053602.	7.8	33
45	Experimental quantum network coding. Npj Quantum Information, 2019, 5, .	6.7	31
46	Compressed sensing for active non-line-of-sight imaging. Optics Express, 2021, 29, 1749.	3.4	30
47	Prefixed-threshold real-time selection method in free-space quantum key distribution. Physical Review A, 2018, 97, .	2.5	29
48	Implementation security of quantum key distribution due to polarization-dependent efficiency mismatch. Physical Review A, 2019, 100, .	2.5	28
49	Security Analysis of Quantum Key Distribution with Small Block Length and Its Application to Quantum Space Communications. Physical Review Letters, 2021, 126, 100501.	7.8	28
50	Device-Independent Quantum Key Distribution with Random Postselection. Physical Review Letters, 2022, 128, 110506.	7.8	27
51	Dynamic non-line-of-sight imaging system based on the optimization of point spread functions. Optics Express, 2021, 29, 32349.	3.4	25
52	Photon-Efficient 3D Imaging with A Non-local Neural Network. Lecture Notes in Computer Science, 2020, , 225-241.	1.3	23
53	Experimental asymmetric plug-and-play measurement-device-independent quantum key distribution. Physical Review A, 2016, 94, .	2.5	22
54	Finite-key analysis for time-energy high-dimensional quantum key distribution. Physical Review A, 2016, 94, .	2.5	21

#	Article	IF	CITATIONS
55	Field Demonstration of Distributed Quantum Sensing without Post-Selection. Physical Review X, 2021, 11, .	8.9	18
56	Spaceborne, low-noise, single-photon detection for satellite-based quantum communications. Optics Express, 2019, 27, 36114.	3.4	18
57	Remote Blind State Preparation with Weak Coherent Pulses in the Field. Physical Review Letters, 2019, 123, 100503.	7.8	17
58	Characterizing multi-photon quantum interference with practical light sources and threshold single-photon detectors. New Journal of Physics, 2018, 20, 043018.	2.9	15
59	Experimental study of a quantum random-number generator based on two independent lasers. Physical Review A, 2017, 96, .	2.5	12
60	Measurement-Device-Independent Entanglement Witness of Tripartite Entangled States and Its Applications. Physical Review Letters, 2020, 124, 160503.	7.8	12
61	Security of quantum key distribution with source and detection imperfections. New Journal of Physics, 2021, 23, 023011.	2.9	12
62	Secure quantum communication in the presence of phase- and polarization-dependent loss. Physical Review A, 2018, 98, .	2.5	11
63	Compact long-range single-photon imager with dynamic imaging capability. Optics Letters, 2021, 46, 1181.	3.3	10
64	Chip-Based Quantum Key Distribution against Trojan-Horse Attack. Physical Review Applied, 2021, 15, .	3.8	10
65	Generalized Hong-Ou-Mandel quantum interference with phase-randomized weak coherent states. Physical Review A, 2020, 101, .	2.5	8
66	Measurement-Device-Independent Verification of a Quantum Memory. Physical Review Letters, 2021, 127, 160502.	7.8	8
67	External magnetic effect for the security of practical quantum key distribution. Quantum Science and Technology, 2022, 7, 045008.	5.8	8
68	Experimental Quantum Key Distribution Secure Against Malicious Devices. Physical Review Applied, 2021, 15, .	3.8	7
69	Photon-efficient computational imaging with a single-photon camera. , 2016, , .		7
70	Deep Learning Based Single-Photon 3D Imaging with Multiple Returns. , 2020, , .		6
71	Photonic realization of quantum resetting. Optica, 2020, 7, 766.	9.3	5
72	Loss-tolerant quantum secure positioning with weak laser sources. Physical Review A, 2016, 94, .	2.5	4

#	Article	IF	Citations
73	Open-Destination Measurement-Device-Independent Quantum Key Distribution Network. Entropy, 2020, 22, 1083.	2.2	4
74	Frequency-modulated continuous-wave 3D imaging with high photon efficiency. Optics Letters, 2022, 47, 3568.	3.3	4
75	Higher amounts of loophole-free Bell violation using a heralded entangled source. New Journal of Physics, 2019, 21, 103008.	2.9	3
76	Efficient experimental quantum fingerprinting with channel multiplexing and simultaneous detection. Nature Communications, 2021, 12, 4464.	12.8	3
77	All-Time Single-Photon 3D Imaging Over 21 km. , 2019, , .		3
78	Verification of a resetting protocol for an uncontrolled superconducting qubit. Npj Quantum Information, 2020, 6, .	6.7	2
79	Experimental demonstration of all-photonic quantum repeater. , 2019, , .		2
80	A high-speed quantum random number generator prototype. , 2013, , .		1
81	Scalable Measurement-Device-Independent Quantum Key Distribution Networks with Untrusted Relays. , 2020, , .		1
82	Bridging the gap between theory and practice in quantum cryptography., 2015,,.		0
83	Practical Measurement Device Independent Quantum Key Distribution., 2013,,.		0
84	High-Dimensional Encoding for Quantum Key Distribution and Random Number Generation. , 2016, , .		0
85	Generation and characterization of factorable biphotons with 99% spectral purity., 2017,,.		O
86	Measurement-device-independent QKD over asymmetric channels. , 2019, , .		0
87	Single-Photon Imaging Goes Long Range. Optics and Photonics News, 2020, 31, 49.	0.5	0
88	Demonstration of an Exponential Advantage in Communication Complexity via the Quantum Switch. , 2020, , .		0