Lisbeth Olsson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9576648/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration. Applied Microbiology and Biotechnology, 2001, 56, 17-34.	3.6	788
2	Fermentation of lignocellulosic hydrolysates for ethanol production. Enzyme and Microbial Technology, 1996, 18, 312-331.	3.2	644
3	Metabolic Engineering of <i>Saccharomyces cerevisiae</i> . Microbiology and Molecular Biology Reviews, 2000, 64, 34-50.	6.6	369
4	Deleting the para-nitrophenyl phosphatase (pNPPase), PHO13, in recombinant Saccharomyces cerevisiae improves growth and ethanol production on d-xylose. Metabolic Engineering, 2008, 10, 360-369.	7.0	332
5	Lignocellulosic ethanol production at high-gravity: challenges and perspectives. Trends in Biotechnology, 2014, 32, 46-53.	9.3	305
6	Increasing NADH oxidation reduces overflow metabolism in Saccharomyces cerevisiae. Proceedings of the United States of America, 2007, 104, 2402-2407.	7.1	302
7	Comparison of SHF and SSF processes from steamâ€exploded wheat straw for ethanol production by xyloseâ€fermenting and robust glucoseâ€fermenting <i>Saccharomyces cerevisiae</i> strains. Biotechnology and Bioengineering, 2008, 100, 1122-1131.	3.3	204
8	Enzymes immobilized in mesoporous silica: A physical–chemical perspective. Advances in Colloid and Interface Science, 2014, 205, 339-360.	14.7	198
9	Glucose control in Saccharomyces cerevisiae: the role of MIG1 in metabolic functions. Microbiology (United Kingdom), 1998, 144, 13-24.	1.8	181
10	Effect of compounds released during pretreatment of wheat straw on microbial growth and enzymatic hydrolysis rates. Biotechnology and Bioengineering, 2007, 96, 250-258.	3.3	171
11	Increasing galactose consumption by Saccharomyces cerevisiae through metabolic engineering of the GAL gene regulatory network. Nature Biotechnology, 2000, 18, 1283-1286.	17.5	168
12	Fermentative performance of bacteria and yeasts in lignocellulose hydrolysates. Process Biochemistry, 1993, 28, 249-257.	3.7	167
13	Cost Analysis of Ethanol Production from Willow Using Recombinant Escherichia coli. Biotechnology Progress, 1994, 10, 555-560.	2.6	156
14	Potential inhibitors from wet oxidation of wheat straw and their effect on ethanol production of Saccharomyces cerevisiae: Wet oxidation and fermentation by yeast. Biotechnology and Bioengineering, 2003, 81, 738-747.	3.3	155
15	The influence of HMF and furfural on redox-balance and energy-state of xylose-utilizing Saccharomyces cerevisiae. Biotechnology for Biofuels, 2013, 6, 22.	6.2	150
16	Industrial Systems Biology of Saccharomyces cerevisiae Enables Novel Succinic Acid Cell Factory. PLoS ONE, 2013, 8, e54144.	2.5	142
17	The chemical nature of phenolic compounds determines their toxicity and induces distinct physiological responses in Saccharomyces cerevisiae in lignocellulose hydrolysates. AMB Express, 2014, 4, 46.	3.0	142
18	Evolutionary engineering strategies to enhance tolerance of xylose utilizing recombinant yeast to inhibitors derived from spruce biomass. Biotechnology for Biofuels, 2012, 5, 32.	6.2	133

#	Article	IF	CITATIONS
19	On-line and in situ monitoring of biomass in submerged cultivations. Trends in Biotechnology, 1997, 15, 517-522.	9.3	131
20	Biobased adipic acid – The challenge of developing the production host. Biotechnology Advances, 2018, 36, 2248-2263.	11.7	125
21	Fermentation performance of engineered and evolved xylose-fermentingSaccharomyces cerevisiaestrains. Biotechnology and Bioengineering, 2004, 87, 90-98.	3.3	123
22	Metabolic footprinting in microbiology: methods and applications in functional genomics and biotechnology. Trends in Biotechnology, 2008, 26, 490-497.	9.3	122
23	Influence of the carbon source on production of cellulases, hemicellulases and pectinases by Trichoderma reesei Rut C-30. Enzyme and Microbial Technology, 2003, 33, 612-619.	3.2	121
24	Metabolite profiling for analysis of yeast stress response during very high gravity ethanol fermentations. Biotechnology and Bioengineering, 2005, 90, 703-714.	3.3	116
25	Improvement of Galactose Uptake in Saccharomyces cerevisiae through Overexpression of Phosphoglucomutase: Example of Transcript Analysis as a Tool in Inverse Metabolic Engineering. Applied and Environmental Microbiology, 2005, 71, 6465-6472.	3.1	116
26	Lignin-first biomass fractionation using a hybrid organosolv – Steam explosion pretreatment technology improves the saccharification and fermentability of spruce biomass. Bioresource Technology, 2019, 273, 521-528.	9.6	114
27	Lignin boosts the cellulase performance of a GH-61 enzyme from Sporotrichum thermophile. Bioresource Technology, 2012, 110, 480-487.	9.6	113
28	Production of cellulases by Penicillium brasilianum IBT 20888—Effect of substrate on hydrolytic performance. Enzyme and Microbial Technology, 2006, 38, 381-390.	3.2	112
29	Production of cellulases and hemicellulases by three Penicillium species: effect of substrate and evaluation of cellulase adsorption by capillary electrophoresis. Enzyme and Microbial Technology, 2005, 36, 42-48.	3.2	109
30	Lipidomic Profiling of Saccharomyces cerevisiae and Zygosaccharomyces bailii Reveals Critical Changes in Lipid Composition in Response to Acetic Acid Stress. PLoS ONE, 2013, 8, e73936.	2.5	104
31	Purification and characterization of five cellulases and one xylanase from Penicillium brasilianum IBT 20888. Enzyme and Microbial Technology, 2003, 32, 851-861.	3.2	102
32	Characterization of Global Yeast Quantitative Proteome Data Generated from the Wild-Type and Glucose Repression <i>Saccharomyces cerevisiae</i> Strains: The Comparison of Two Quantitative Methods. Journal of Proteome Research, 2008, 7, 266-275.	3.7	101
33	Reconstruction of the yeast Snf1 kinase regulatory network reveals its role as a global energy regulator. Molecular Systems Biology, 2009, 5, 319.	7.2	97
34	A novel hybrid organosolv: steam explosion method for the efficient fractionation and pretreatment of birch biomass. Biotechnology for Biofuels, 2018, 11, 160.	6.2	97
35	Physiological characterization of brewer's yeast in high-gravity beer fermentations with glucose or maltose syrups as adjuncts. Applied Microbiology and Biotechnology, 2009, 84, 453-464.	3.6	93
36	Impact of the supramolecular structure of cellulose on the efficiency of enzymatic hydrolysis. Biotechnology for Biofuels, 2015, 8, 56.	6.2	93

#	Article	IF	CITATIONS
37	Metabolic Engineering of Ammonium Assimilation in Xylose-Fermenting Saccharomyces cerevisiae Improves Ethanol Production. Applied and Environmental Microbiology, 2003, 69, 4732-4736.	3.1	92
38	Characterization and kinetic analysis of a thermostable GH3 β-glucosidase from Penicillium brasilianum. Applied Microbiology and Biotechnology, 2010, 86, 143-154.	3.6	92
39	Production of cellulose and hemicellulose-degrading enzymes by filamentous fungi cultivated on wet-oxidised wheat straw. Enzyme and Microbial Technology, 2003, 32, 606-615.	3.2	91
40	Characterization of very high gravity ethanol fermentation of corn mash. Effect of glucoamylase dosage, pre-saccharification and yeast strain. Applied Microbiology and Biotechnology, 2005, 68, 622-629.	3.6	91
41	Simultaneous saccharification and co-fermentation for bioethanol production using corncobs at lab, PDU and demo scales. Biotechnology for Biofuels, 2013, 6, 2.	6.2	91
42	Challenges in enzymatic hydrolysis and fermentation of pretreated Arundo donax revealed by a comparison between SHF and SSF. Process Biochemistry, 2012, 47, 1452-1459.	3.7	87
43	On-line estimation of biomass, glucose and ethanol in Saccharomyces cerevisiae cultivations using in-situ multi-wavelength fluorescence and software sensors. Journal of Biotechnology, 2009, 144, 102-112.	3.8	82
44	On-line bioprocess monitoring with a multi-wavelength fluorescence sensor using multivariate calibration. Journal of Biotechnology, 2001, 88, 47-57.	3.8	81
45	Evolutionary engineering of Saccharomyces cerevisiae for efficient aerobic xylose consumption. FEMS Yeast Research, 2012, 12, 582-597.	2.3	81
46	Cleanup and Analysis of Sugar Phosphates in Biological Extracts by Using Solid-Phase Extraction and Anion-Exchange Chromatography with Pulsed Amperometric Detection. Analytical Biochemistry, 1998, 261, 36-42.	2.4	79
47	Intracellular metabolite profiling of Fusarium oxysporum converting glucose to ethanol. Journal of Biotechnology, 2005, 115, 425-434.	3.8	78
48	Hydrolysis of cellulose using mono-component enzymes shows synergy during hydrolysis of phosphoric acid swollen cellulose (PASC), but competition on Avicel. Enzyme and Microbial Technology, 2008, 42, 362-370.	3.2	76
49	Simultaneous overexpression of enzymes of the lower part of glycolysis can enhance the fermentative capacity ofSaccharomyces cerevisiae. Yeast, 2000, 16, 1325-1334.	1.7	75
50	The interplay of descriptor-based computational analysis with pharmacophore modeling builds the basis for a novel classification scheme for feruloyl esterases. Biotechnology Advances, 2011, 29, 94-110.	11.7	74
51	Screening Genus <i>Penicillium </i> for Producers of Cellulolytic and Xylanolytic Enzymes. Applied Biochemistry and Biotechnology, 2004, 114, 389-402.	2.9	73
52	Manipulation of malic enzyme in Saccharomyces cerevisiae for increasing NADPH production capacity aerobically in different cellular compartments. Metabolic Engineering, 2004, 6, 352-363.	7.0	73
53	A GH115 α-glucuronidase from Schizophyllum commune contributes to the synergistic enzymatic deconstruction of softwood glucuronoarabinoxylan. Biotechnology for Biofuels, 2016, 9, 2.	6.2	72
54	A systems biology approach to study glucose repression in the yeastSaccharomyces cerevisiae. Biotechnology and Bioengineering, 2007, 96, 134-145.	3.3	71

#	Article	IF	CITATIONS
55	Engineering glutathione biosynthesis of Saccharomyces cerevisiae increases robustness to inhibitors in pretreated lignocellulosic materials. Microbial Cell Factories, 2013, 12, 87.	4.0	71
56	Comparative metabolic network analysis of two xylose fermenting recombinant Saccharomyces cerevisiae strains. Metabolic Engineering, 2005, 7, 437-444.	7.0	65
57	Combined substrate, enzyme and yeast feed in simultaneous saccharification and fermentation allow bioethanol production from pretreated spruce biomass at high solids loadings. Biotechnology for Biofuels, 2014, 7, 54.	6.2	65
58	Identification of In Vivo Enzyme Activities in the Cometabolism of Glucose and Acetate by Saccharomyces cerevisiae by Using 13 C-Labeled Substrates. Eukaryotic Cell, 2003, 2, 599-608.	3.4	63
59	An expanded role for microbial physiology in metabolic engineering and functional genomics: moving towards systems biology. FEMS Yeast Research, 2002, 2, 175-181.	2.3	61
60	Physiological response of <i>Saccharomyces cerevisiae</i> to weak acids present in lignocellulosic hydrolysate. FEMS Yeast Research, 2014, 14, 1234-1248.	2.3	60
61	Changes in lipid metabolism convey acid tolerance in Saccharomyces cerevisiae. Biotechnology for Biofuels, 2018, 11, 297.	6.2	60
62	Catabolism of coniferyl aldehyde, ferulic acid and p-coumaric acid by Saccharomyces cerevisiae yields less toxic products. Microbial Cell Factories, 2015, 14, 149.	4.0	59
63	On-line bioprocess monitoring $\hat{a} \in$ an academic discipline or an industrial tool?. TrAC - Trends in Analytical Chemistry, 1998, 17, 88-95.	11.4	58
64	On-line cell mass monitoring of Saccharomyces cerevisiae cultivations by multi-wavelength fluorescence. Journal of Biotechnology, 2004, 114, 199-208.	3.8	58
65	The roles of galactitol, galactoseâ€l â€phosphate, and phosphoglucomutase in galactoseâ€induced toxicity in <i>Saccharomyces cerevisiae</i> . Biotechnology and Bioengineering, 2008, 101, 317-326.	3.3	58
66	Physiological studies in aerobic batch cultivations ofSaccharomyces cerevisiae strains harboring theMEL1 gene. Biotechnology and Bioengineering, 2000, 68, 252-259.	3.3	57
67	Ability for Anaerobic Growth Is Not Sufficient for Development of the Petite Phenotype in Saccharomyces kluyveri. Journal of Bacteriology, 2001, 183, 2485-2489.	2.2	57
68	A glucuronoyl esterase from <i>Acremonium alcalophilum</i> cleaves native lignin arbohydrate ester bonds. FEBS Letters, 2016, 590, 2611-2618.	2.8	57
69	Immobilization of feruloyl esterases in mesoporous materials leads to improved transesterification yield. Journal of Molecular Catalysis B: Enzymatic, 2011, 72, 57-64.	1.8	55
70	Sphingolipids contribute to acetic acid resistance in <i>Zygosaccharomyces bailii</i> . Biotechnology and Bioengineering, 2016, 113, 744-753.	3.3	54
71	Specific Xylan Activity Revealed for AA9 Lytic Polysaccharide Monooxygenases of the Thermophilic Fungus <i>Malbranchea cinnamomea</i> by Functional Characterization. Applied and Environmental Microbiology, 2019, 85, .	3.1	54

Fueling Industrial Biotechnology Growth with Bioethanol. , 2007, 108, 1-40.

51

#	Article	IF	CITATIONS
73	In vivo dynamics of galactose metabolism inSaccharomyces cerevisiae: Metabolic fluxes and metabolite levels. Biotechnology and Bioengineering, 2001, 73, 412-425.	3.3	50
74	Short-term adaptation during propagation improves the performance of xylose-fermenting Saccharomyces cerevisiae in simultaneous saccharification and co-fermentation. Biotechnology for Biofuels, 2015, 8, 219.	6.2	50
75	Evolutionary engineered Candida intermedia exhibits improved xylose utilization and robustness to lignocellulose-derived inhibitors and ethanol. Applied Microbiology and Biotechnology, 2019, 103, 1405-1416.	3.6	49
76	Morphology and enzyme production of Trichoderma reesei Rut C-30 are affected by the physical and structural characteristics of cellulosic substrates. Fungal Genetics and Biology, 2014, 72, 64-72.	2.1	47
77	The role of metabolic engineering in the improvement of Saccharomyces cerevisiae: utilization of industrial media. Enzyme and Microbial Technology, 2000, 26, 785-792.	3.2	46
78	Production and partial characterization of arabinoxylan-degrading enzymes by Penicillium brasilianum under solid-state fermentation. Applied Microbiology and Biotechnology, 2006, 72, 1117-1124.	3.6	46
79	Determination of cell mass and polymyxin using multi-wavelength fluorescence. Journal of Biotechnology, 2006, 121, 544-554.	3.8	45
80	Penicillium brasilianum as an enzyme factory; the essential role of feruloyl esterases for the hydrolysis of the plant cell wall. Journal of Biotechnology, 2007, 130, 219-228.	3.8	45
81	Feruloyl esterase immobilization in mesoporous silica particles and characterization in hydrolysis and transesterification. BMC Biochemistry, 2018, 19, 1.	4.4	44
82	Monitoring of ethanol during fermentation of a lignocellulose hydrolysate by on-line microdialysis sampling, column liquid chromatography, and an alcohol biosensor. Biotechnology and Bioengineering, 1994, 44, 322-328.	3.3	43
83	Impact of overexpressing NADH kinase on glucose and xylose metabolism in recombinant xylose-utilizing Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 2009, 82, 909-919.	3.6	43
84	Pulsed addition of HMF and furfural to batch-grown xylose-utilizing Saccharomyces cerevisiaeresults in different physiological responses in glucose and xylose consumption phase. Biotechnology for Biofuels, 2013, 6, 181.	6.2	43
85	In situ laccase treatment enhances the fermentability of steam-exploded wheat straw in SSCF processes at high dry matter consistencies. Bioresource Technology, 2013, 143, 337-343.	9.6	43
86	Linking hydrolysis performance to <i>Trichoderma reesei</i> cellulolytic enzyme profile. Biotechnology and Bioengineering, 2016, 113, 1001-1010.	3.3	41
87	Physiological responses to acid stress by <i>Saccharomyces cerevisiae</i> when applying high initial cell density. FEMS Yeast Research, 2016, 16, fow072.	2.3	41
88	Aerobic glucose metabolism ofSaccharomyces kluyveri:Growth, metabolite production, and quantification of metabolic fluxes. Biotechnology and Bioengineering, 2002, 77, 186-193.	3.3	40
89	Separation and quantification of cellulases and hemicellulases by capillary electrophoresis. Analytical Biochemistry, 2003, 317, 85-93.	2.4	40
90	Systems Analysis Unfolds the Relationship between the Phosphoketolase Pathway and Growth in Aspergillus nidulans. PLoS ONE, 2008, 3, e3847.	2.5	40

#	Article	IF	CITATIONS
91	A comparative summary of expression systems for the recombinant production of galactose oxidase. Microbial Cell Factories, 2010, 9, 68.	4.0	40
92	Metabolic and bioprocess engineering for production of selenized yeast with increased content of seleno-methylselenocysteine. Metabolic Engineering, 2011, 13, 282-293.	7.0	40
93	The impact ofGAL6,GAL80, andMIG1on glucose control of theGALsystem inSaccharomyces cerevisiae. FEMS Yeast Research, 2001, 1, 47-55.	2.3	39
94	Aerobic physiology of redox-engineered strains modified in the ammonium assimilation for increased NADPH availability. FEMS Yeast Research, 2003, 4, 59-68.	2.3	39
95	Kinetic modeling of multi-feed simultaneous saccharification and co-fermentation of pretreated birch to ethanol. Bioresource Technology, 2014, 172, 303-311.	9.6	38
96	Combined genome and transcriptome sequencing to investigate the plant cell wall degrading enzyme system in the thermophilic fungus Malbranchea cinnamomea. Biotechnology for Biofuels, 2017, 10, 265.	6.2	37
97	Change in hyphal morphology of Aspergillus oryzae during fed-batch cultivation. Applied Microbiology and Biotechnology, 2006, 70, 482-487.	3.6	36
98	Comparison of strategies to overcome the inhibitory effects in high-gravity fermentation of lignocellulosic hydrolysates. Biomass and Bioenergy, 2014, 65, 79-90.	5.7	36
99	Determination of monosaccharides in cellulosic hydrolyzates using immobilized pyranose oxidase in a continuous amperometric analyzer. Analytical Chemistry, 1990, 62, 2688-2691.	6.5	35
100	The influence of different cultivation conditions on the metabolome of Fusarium oxysporum. Journal of Biotechnology, 2005, 118, 304-315.	3.8	35
101	Biochemical and structural features of diverse bacterial glucuronoyl esterases facilitating recalcitrant biomass conversion. Biotechnology for Biofuels, 2018, 11, 213.	6.2	35
102	ALD5, PAD1, ATF1 and ATF2 facilitate the catabolism of coniferyl aldehyde, ferulic acid and p-coumaric acid in Saccharomyces cerevisiae. Scientific Reports, 2017, 7, 42635.	3.3	33
103	Qualitative and quantitative carbohydrate analysis of fermentation substrates and broths by liquid chromatographic techniques. Journal of Chromatography A, 1994, 665, 317-332.	3.7	31
104	Hap4 ls Not Essential for Activation of Respiration at Low Specific Growth Rates in Saccharomyces cerevisiae*. Journal of Biological Chemistry, 2006, 281, 12308-12314.	3.4	31
105	Studies of the Production of Fungal Polyketides in <i>Aspergillus nidulans</i> by Using Systems Biology Tools. Applied and Environmental Microbiology, 2009, 75, 2212-2220.	3.1	31
106	Overexpression of a novel endogenous NADH kinase in Aspergillus nidulans enhances growth. Metabolic Engineering, 2009, 11, 31-39.	7.0	31
107	Effects of temperature and glycerol and methanolâ€feeding profiles on the production of recombinant galactose oxidase in Pichia pastoris. Biotechnology Progress, 2014, 30, 728-735.	2.6	31
108	Redox processes acidify and decarboxylate steam-pretreated lignocellulosic biomass and are modulated by LPMO and catalase. Biotechnology for Biofuels, 2018, 11, 165.	6.2	31

#	Article	IF	CITATIONS
109	Growth and enzyme production by three Penicillium species on monosaccharides. Journal of Biotechnology, 2004, 109, 295-299.	3.8	29
110	Longâ€ŧerm adaptation of <i>Saccharomyces cerevisiae</i> to the burden of recombinant insulin production. Biotechnology and Bioengineering, 2013, 110, 2749-2763.	3.3	29
111	Mannanase hydrolysis of spruce galactoglucomannan focusing on the influence of acetylation on enzymatic mannan degradation. Biotechnology for Biofuels, 2018, 11, 114.	6.2	29
112	Data mining of Saccharomyces cerevisiae mutants engineered for increased tolerance towards inhibitors in lignocellulosic hydrolysates. Biotechnology Advances, 2022, 57, 107947.	11.7	29
113	Gene deletion of cytosolic ATP: citrate lyase leads to altered organic acid production in Aspergillus niger. Journal of Industrial Microbiology and Biotechnology, 2009, 36, 1275-1280.	3.0	28
114	The interplay between sulphur and selenium metabolism influences the intracellular redox balance in Saccharomyces cerevisiae. FEMS Yeast Research, 2012, 12, 20-32.	2.3	28
115	Fed-batch SSCF using steam-exploded wheat straw at high dry matter consistencies and a xylose-fermenting Saccharomyces cerevisiae strain: effect of laccase supplementation. Biotechnology for Biofuels, 2013, 6, 160.	6.2	28
116	Influence of the propagation strategy for obtaining robust <scp><i>S</i></scp> <i>accharomyces cerevisiae</i> cells that efficiently coâ€ferment xylose and glucose in lignocellulosic hydrolysates. Microbial Biotechnology, 2015, 8, 999-1005.	4.2	28
117	Surveying of acid-tolerant thermophilic lignocellulolytic fungi in Vietnam reveals surprisingly high genetic diversity. Scientific Reports, 2019, 9, 3674.	3.3	28
118	Production of fungal α-amylase by Saccharomyces kluyveri in glucose-limited cultivations. Journal of Biotechnology, 2004, 111, 311-318.	3.8	27
119	Chemometric analysis of in-line multi-wavelength fluorescence measurements obtained during cultivations with a lipase producingAspergillus oryzae strain. Biotechnology and Bioengineering, 2007, 96, 904-913.	3.3	27
120	Revealing the beneficial effect of protease supplementation to high gravity beer fermentations using "-omics" techniques. Microbial Cell Factories, 2011, 10, 27.	4.0	27
121	Toward a sustainable biorefinery using highâ€gravity technology. Biofuels, Bioproducts and Biorefining, 2017, 11, 15-27.	3.7	27
122	Biochemical evidence of both copper chelation and oxygenase activity at the histidine brace. Scientific Reports, 2020, 10, 16369.	3.3	27
123	Sensor combination and chemometric variable selection for online monitoring of Streptomyces coelicolor fed-batch cultivations. Applied Microbiology and Biotechnology, 2010, 86, 1745-1759.	3.6	25
124	Studying the ability of Fusarium oxysporum and recombinant Saccharomyces cerevisiae to efficiently cooperate in decomposition and ethanolic fermentation of wheat straw. Biomass and Bioenergy, 2011, 35, 3727-3732.	5.7	25
125	How well do the substrates KISS the enzyme? Molecular docking program selection for feruloyl esterases. Scientific Reports, 2012, 2, 323.	3.3	25
126	Glycosylation influences activity, stability and immobilization of the feruloyl esterase 1a from Myceliophthora thermophila. AMB Express, 2019, 9, 126.	3.0	25

#	Article	IF	CITATIONS
127	Strain-dependent variance in short-term adaptation effects of two xylose-fermenting strains of Saccharomyces cerevisiae. Bioresource Technology, 2019, 292, 121922.	9.6	25
128	Robustness: linking strain design to viable bioprocesses. Trends in Biotechnology, 2022, 40, 918-931.	9.3	24
129	The βâ€subunits of the Snf1 kinase in <i>Saccharomyces cerevisiae</i> , Gal83 and Sip2, but not Sip1, are redundant in glucose derepression and regulation of sterol biosynthesis. Molecular Microbiology, 2010, 77, 371-383.	2.5	23
130	Industrial yeasts strains for biorefinery solutions: Constructing and selecting efficient barcoded xylose fermenting strains for ethanol. Biofuels, Bioproducts and Biorefining, 2014, 8, 626-634.	3.7	23
131	Characterisation of three fungal glucuronoyl esterases on glucuronic acid ester model compounds. Applied Microbiology and Biotechnology, 2017, 101, 5301-5311.	3.6	23
132	Real-Time Monitoring of the Yeast Intracellular State During Bioprocesses With a Toolbox of Biosensors. Frontiers in Microbiology, 2021, 12, 802169.	3.5	23
133	Multimodular fused acetyl–feruloyl esterases from soil and gut Bacteroidetes improve xylanase depolymerization of recalcitrant biomass. Biotechnology for Biofuels, 2020, 13, 60.	6.2	22
134	Alcohols enhance the rate of acetic acid diffusion in S. cerevisiae: biophysical mechanisms and implications for acetic acid tolerance. Microbial Cell, 2018, 5, 42-55.	3.2	22
135	Comparison of Six Lytic Polysaccharide Monooxygenases from <i>Thermothielavioides terrestris</i> Shows That Functional Variation Underlies the Multiplicity of LPMO Genes in Filamentous Fungi. Applied and Environmental Microbiology, 2022, 88, aem0009622.	3.1	22
136	Identification of biomarkers for genotyping Aspergilli using non-linear methods for clustering and classification. BMC Bioinformatics, 2008, 9, 59.	2.6	21
137	QCM-D as a method for monitoring enzyme immobilization in mesoporous silica particles. Microporous and Mesoporous Materials, 2013, 176, 71-77.	4.4	21
138	Understanding the pH-dependent immobilization efficacy of feruloyl esterase-C on mesoporous silica and its structure–activity changes. Journal of Molecular Catalysis B: Enzymatic, 2013, 93, 65-72.	1.8	21
139	Immobilisation on mesoporous silica and solvent rinsing improve the transesterification abilities of feruloyl esterases from Myceliophthora thermophila. Bioresource Technology, 2017, 239, 57-65.	9.6	21
140	Structure–function analyses reveal that a glucuronoyl esterase from Teredinibacter turnerae interacts with carbohydrates and aromatic compounds. Journal of Biological Chemistry, 2019, 294, 6635-6644.	3.4	21
141	Engineering of the redox imbalance of Fusarium oxysporum enables anaerobic growth on xylose. Metabolic Engineering, 2006, 8, 474-482.	7.0	20
142	Hydrolytic potential of five fungal supernatants to enhance a commercial enzyme cocktail. Biotechnology Letters, 2017, 39, 1403-1411.	2.2	20
143	A rapid chromatographic method for the production of preparative amounts of xylulose. Enzyme and Microbial Technology, 1994, 16, 388-394.	3.2	19
144	A method to measure pH inside mesoporous particles using protein-bound SNARF1 fluorescent probe. Microporous and Mesoporous Materials, 2013, 165, 240-246.	4.4	18

#	Article	IF	CITATIONS
145	Glucuronoyl Esterase Screening and Characterization Assays Utilizing Commercially Available Benzyl Glucuronic Acid Ester. Molecules, 2015, 20, 17807-17817.	3.8	18
146	Visualization of structural changes in cellulosic substrates during enzymatic hydrolysis using multimodal nonlinear microscopy. Cellulose, 2016, 23, 1521-1536.	4.9	18
147	Adipic acid tolerance screening for potential adipic acid production hosts. Microbial Cell Factories, 2017, 16, 20.	4.0	18
148	Immobilization of bacterial feruloyl esterase on mesoporous silica particles and enhancement of synthetic activity by hydrophobic-modified surface. Bioresource Technology, 2019, 293, 122009.	9.6	18
149	The future of self-selecting and stable fermentations. Journal of Industrial Microbiology and Biotechnology, 2020, 47, 993-1004.	3.0	18
150	Nutrient-supplemented propagation of Saccharomyces cerevisiae improves its lignocellulose fermentation ability. AMB Express, 2020, 10, 157.	3.0	18
151	Modulating heterologous protein production in yeast: the applicability of truncated auxotrophic markers. Applied Microbiology and Biotechnology, 2013, 97, 3939-3948.	3.6	17
152	Synthesis and enzymatic hydrolysis of a diaryl benzyl ester model of a lignin-carbohydrate complex (LCC). Holzforschung, 2016, 70, 385-391.	1.9	17
153	Rice straw hydrolysis using secretomes from novel fungal isolates from Vietnam. Biomass and Bioenergy, 2017, 99, 11-20.	5.7	17
154	Ethanolic fermentation of acid pre-treated starch industry effluents by recombinant Saccharomyces cerevisiae strains. Bioresource Technology, 2005, 96, 1670-1676.	9.6	16
155	Fermentation characteristics of Fusariumoxysporum grown on acetate. Bioresource Technology, 2008, 99, 7397-7401.	9.6	16
156	The coordinated action of glucuronoyl esterase and αâ€glucuronidase promotes the disassembly of lignin–carbohydrate complexes. FEBS Letters, 2021, 595, 351-359.	2.8	16
157	Immobilization of pyranose oxidase (Phanerochaete chrysosporium): Characterization of the enzymic properties. Enzyme and Microbial Technology, 1991, 13, 755-759.	3.2	15
158	Performance of microorganisms in spent sulfite liquor and enzymatic hydrolysate of steam-pretreatedSalix. Applied Biochemistry and Biotechnology, 1992, 34-35, 359-368.	2.9	15
159	The Synthetic Potential of Fungal Feruloyl Esterases: A Correlation with Current Classification Systems and Predicted Structural Properties. Catalysts, 2018, 8, 242.	3.5	15
160	Genomic and transcriptomic analysis of Candida intermedia reveals the genetic determinants for its xylose-converting capacity. Biotechnology for Biofuels, 2020, 13, 48.	6.2	15
161	Genomic and transcriptomic analysis of the thermophilic lignocellulose-degrading fungus Thielavia terrestris LPH172. Biotechnology for Biofuels, 2021, 14, 131.	6.2	15
162	Quantifying Oxidation of Cellulose-Associated Glucuronoxylan by Two Lytic Polysaccharide Monooxygenases from Neurospora crassa. Applied and Environmental Microbiology, 2021, 87, e0165221.	3.1	15

#	Article	IF	CITATIONS
163	Structureâ€function analysis of two closely related cutinases from <i>Thermobifida cellulosilytica</i> . Biotechnology and Bioengineering, 2022, 119, 470-481.	3.3	15
164	Steady-state and transient-state analyses of aerobic fermentation in. FEMS Yeast Research, 2002, 2, 233-244.	2.3	14
165	Elucidation of the role of Grr1p in glucose sensing by through genome-wide transcription analysis. FEMS Yeast Research, 2004, 5, 193-204.	2.3	14
166	Experimental investigations of multiple steady states in aerobic continuous cultivations of Saccharomyces cerevisiae. Biotechnology and Bioengineering, 2003, 82, 766-777.	3.3	13
167	Common and Distant Structural Characteristics of Feruloyl Esterase Families from Aspergillus oryzae. PLoS ONE, 2012, 7, e39473.	2.5	13
168	The supramolecular structure of cellulose-rich wood pulps can be a determinative factor for enzymatic hydrolysability. Cellulose, 2015, 22, 3991-4002.	4.9	13
169	A comparative study of the enzymatic hydrolysis of batch organosolv-pretreated birch and spruce biomass. AMB Express, 2018, 8, 114.	3.0	13
170	Adaptation of Saccharomyces cerevisiae expressing a heterologous protein. Journal of Biotechnology, 2008, 137, 28-33.	3.8	12
171	Physiological characterisation of acuB deletion in Aspergillus niger. Applied Microbiology and Biotechnology, 2009, 84, 157-167.	3.6	12
172	In silico and in vitro studies of the reduction of unsaturated α,β bonds of trans-2-hexenedioic acid and 6-amino-trans-2-hexenoic acid – Important steps towards biobased production of adipic acid. PLoS ONE, 2018, 13, e0193503.	2.5	12
173	An expanded role for microbial physiology in metabolic engineering and functional genomics: moving towards systems biology. FEMS Yeast Research, 2002, 2, 175-181.	2.3	11
174	Transcription analysis of S. cerevisiae in VHG fermentation: The genome-wide transcriptional response of Saccharomyces cerevisiae during very high gravity ethanol fermentations is highly affected by the stationary phase. Industrial Biotechnology, 2005, 1, 51-63.	0.8	11
175	Physiological characterization of glucose repression in the strains with SNF1 and SNF4 genes deleted. Journal of Biotechnology, 2008, 133, 73-81.	3.8	11
176	Genome sequence of Rhizomucor pusillus FCH 5.7, a thermophilic zygomycete involved in plant biomass degradation harbouring putative GH9 endoglucanases. Biotechnology Reports (Amsterdam,) Tj ETQq0 () 04r.gBT /(Overdock 10 T
177	Respiratory Physiology of Lactococcus lactis in Chemostat Cultures and Its Effect on Cellular Robustness in Frozen and Freeze-Dried Starter Cultures. Applied and Environmental Microbiology, 2020, 86, .	3.1	11
178	Pretreatment of Lignocellulosic Feedstocks. , 2017, , 31-52.		11
179	Combining Substrate Specificity Analysis with Support Vector Classifiers Reveals Feruloyl Esterase as a Phylogenetically Informative Protein Group. PLoS ONE, 2010, 5, e12781.	2.5	11
180	Determination of fructose using immobilized glucose isomerase in an on-line analyzer. Analytica Chimica Acta, 1989, 224, 31-38.	5.4	10

#	Article	IF	CITATIONS
181	Dynamic responses of Pseudomonas fluorescens DF57 to nitrogen or carbon source addition. Journal of Biotechnology, 2001, 86, 39-50.	3.8	10
182	Steady-state and transient-state analyses of aerobic fermentation inSaccharomyces kluyveri. FEMS Yeast Research, 2002, 2, 233-244.	2.3	10
183	Analysis of methods for quantifying yeast cell concentration in complex lignocellulosic fermentation processes. Scientific Reports, 2021, 11, 11293.	3.3	10
184	The protective role of intracellular glutathione in Saccharomyces cerevisiae during lignocellulosic ethanol production. AMB Express, 2020, 10, 219.	3.0	10
185	Nitrogen-limited continuous cultivations as a tool to quantify glucose control in Saccharomyces cerevisiae. Enzyme and Microbial Technology, 1998, 23, 91-100.	3.2	8
186	Characterization and fermentation of side streams from sulfite pulping. Process Biochemistry, 2014, 49, 1231-1237.	3.7	8
187	Complete Genome Sequences of the Xylose-Fermenting Candida intermedia Strains CBS 141442 and PYCC 4715. Genome Announcements, 2017, 5, .	0.8	8
188	Exploring functionality of the reverse β-oxidation pathway in Corynebacterium glutamicum for production of adipic acid. Microbial Cell Factories, 2021, 20, 155.	4.0	8
189	Phylogenetic analysis and in-depth characterization of functionally and structurally diverse CE5 cutinases. Journal of Biological Chemistry, 2021, 297, 101302.	3.4	8
190	Dynamic effects related to steady-state multiplicity in continuousSaccharomyces cerevisiaecultivations. Biotechnology and Bioengineering, 2004, 88, 838-848.	3.3	7
191	The impact of phosphate scarcity on pharmaceutical protein production in S. cerevisiae: linking transcriptomic insights to phenotypic responses. Microbial Cell Factories, 2011, 10, 104.	4.0	7
192	A coniferyl aldehyde dehydrogenase gene from Pseudomonas sp. strain HR199 enhances the conversion of coniferyl aldehyde by Saccharomyces cerevisiae. Bioresource Technology, 2016, 212, 11-19.	9.6	7
193	Membrane engineering of S. cerevisiae targeting sphingolipid metabolism. Scientific Reports, 2017, 7, 41868.	3.3	7
194	RNA sequencing reveals metabolic and regulatory changes leading to more robust fermentation performance during short-term adaptation of Saccharomyces cerevisiae to lignocellulosic inhibitors. Biotechnology for Biofuels, 2021, 14, 201.	6.2	7
195	Quantification of Microbial Robustness in Yeast. ACS Synthetic Biology, 2022, 11, 1686-1691.	3.8	7
196	Biorefineries, using lignocellulosic feedstocks, will have a key role in the future bioeconomy. Biofuels, Bioproducts and Biorefining, 2013, 7, 475-477.	3.7	6
197	Multiple nucleophilic elbows leading to multiple active sites in a single module esterase from Sorangium cellulosum. Journal of Structural Biology, 2015, 190, 314-327.	2.8	6
198	The Presence of Pretreated Lignocellulosic Solids from Birch during Saccharomyces cerevisiae Fermentations Leads to Increased Tolerance to Inhibitors – A Proteomic Study of the Effects. PLoS ONE, 2016, 11, e0148635.	2.5	6

#	Article	IF	CITATIONS
199	Small scale screening of yeast strains enables high-throughput evaluation of performance in lignocellulose hydrolysates. Bioresource Technology Reports, 2020, 11, 100532.	2.7	6
200	The challenge of improved secretory production of active pharmaceutical ingredients in <i>Saccharomyces cerevisiae</i> : A case study on human insulin analogs. Biotechnology and Bioengineering, 2013, 110, 2764-2774.	3.3	5
201	Deciphering the signaling mechanisms of the plant cell wall degradation machinery in Aspergillus oryzae. BMC Systems Biology, 2015, 9, 77.	3.0	5
202	Viability Study of the Use of Cast Iron Open Cell Foam as Microbial Fuel Cell Electrodes. Advanced Engineering Materials, 2013, 15, 112-117.	3.5	4
203	Candida intermedia CBS 141442: A Novel Glucose/Xylose Co-Fermenting Isolate for Lignocellulosic Bioethanol Production. Energies, 2020, 13, 5363.	3.1	4
204	Adaptation during propagation improves Clostridium autoethanogenum tolerance towards benzene, toluene and xylenes during gas fermentation. Bioresource Technology Reports, 2020, 12, 100564.	2.7	4
205	Presence of galactose in precultures induces <i>lacS</i> and leads to short lag phase in lactose-grown <i>Lactococcus lactis</i> cultures. Journal of Industrial Microbiology and Biotechnology, 2019, 46, 33-43.	3.0	3
206	Towards enhancement of gas–liquid mass transfer in bioelectrochemical systems: Validation of a robust CFD model. Biotechnology and Bioengineering, 2021, 118, 3953-3961.	3.3	3
207	Molecular-dynamics-simulation-guided membrane engineering allows the increase of membrane fatty acid chain length in Saccharomyces cerevisiae. Scientific Reports, 2021, 11, 17333.	3.3	3
208	The Role of Sch9 and the V-ATPase in the Adaptation Response to Acetic Acid and the Consequences for Growth and Chronological Lifespan. Microorganisms, 2021, 9, 1871.	3.6	3
209	Screening Genus Penicillium for Producers of Cellulolytic and Xylanolytic Enzymes. , 2004, , 389-401.		3
210	Inhibition of LPMOs by Fermented Persimmon Juice. Biomolecules, 2021, 11, 1890.	4.0	3
211	The impact of , , and on glucose control of the system in. FEMS Yeast Research, 2001, 1, 47-55.	2.3	1
212	Investigations of Multiple Steady-States in Continuous Cultivation of Saccharomyces cerevisiae. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2001, 34, 97-102.	0.4	1
213	Genome Sequence of the Thermophilic Biomass-Degrading Fungus <i>Malbranchea cinnamomea</i> FCH 10.5. Genome Announcements, 2017, 5, .	0.8	1
214	Conformational gating in ammonia lyases. Biochimica Et Biophysica Acta - General Subjects, 2020, 1864, 129605.	2.4	1
215	Structure-function investigation of 3-methylaspartate ammonia lyase reveals substrate molecular determinants for the deamination reaction. PLoS ONE, 2020, 15, e0233467.	2.5	1

216 Metabolic Pathway Analysis of Saccharomyces Cerevisiae. , 2001, , 75-85.

#	Article	IF	CITATIONS
217	On-line monitoring of fermentation processes using multi-wavelength fluorescence. Journal of Biotechnology, 2007, 131, S187.	3.8	0
218	Are cell factories ready for industrial biotech processes?. Biofuels, Bioproducts and Biorefining, 2008, 2, 91-91.	3.7	0