Kevin C Leonard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9576443/publications.pdf

Version: 2024-02-01

567281 552781 27 981 15 26 citations h-index g-index papers 31 31 31 1567 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Can Artificial Intelligence and Machine Learning Be Used to Accelerate Sustainable Chemistry and Engineering?. ACS Sustainable Chemistry and Engineering, 2021, 9, 6126-6129.	6.7	14
2	Simultaneous Intelligent Imaging of Nanoscale Reactivity and Topography by Scanning Electrochemical Microscopy. Analytical Chemistry, 2021, 93, 8906-8914.	6.5	8
3	Organic Electrosynthesis in CO ₂ -eXpanded Electrolytes: Enabling Selective Acetophenone Carboxylation to Atrolatic Acid. ACS Sustainable Chemistry and Engineering, 2021, 9, 10431-10436.	6.7	11
4	Can CO ₂ and Renewable Carbon Be Primary Resources for Sustainable Fuels and Chemicals?. ACS Sustainable Chemistry and Engineering, 2021, 9, 12427-12430.	6.7	41
5	Numerical Deconvolution of Surface Interrogation Scanning Electrochemical Microscopy Experiments on Platinum During Hydrogen Evolution. ChemElectroChem, 2020, 7, 4842-4842.	3.4	O
6	Numerical Deconvolution of Surface Interrogation Scanning Electrochemical Microscopy Experiments on Platinum During Hydrogen Evolution. ChemElectroChem, 2020, 7, 4863-4872.	3.4	5
7	Enhancing Molecular Electrocatalysis of CO ₂ Reduction with Pressure‶unable CO ₂ â€Expanded Electrolytes. ChemSusChem, 2020, 13, 6338-6345.	6.8	8
8	Insights into pressure tunable reaction rates for electrochemical reduction of CO ₂ in organic electrolytes. Green Chemistry, 2020, 22, 2434-2442.	9.0	20
9	Nanoscale Intelligent Imaging Based on Real-Time Analysis of Approach Curve by Scanning Electrochemical Microscopy. Analytical Chemistry, 2019, 91, 10227-10235.	6.5	9
10	Hot-Tip Scanning Electrochemical Microscopy: Theory and Experiments Under Positive and Negative Feedback Conditions. Analytical Chemistry, 2019, 91, 2970-2977.	6.5	10
11	Intensified Electrocatalytic CO ₂ Conversion in Pressure‶unable CO ₂ â€Expanded Electrolytes. ChemSusChem, 2019, 12, 3761-3768.	6.8	19
12	Probing High Permeability of Nuclear Pore Complexes by Scanning Electrochemical Microscopy: Ca ²⁺ Effects on Transport Barriers. Analytical Chemistry, 2019, 91, 5446-5454.	6.5	11
13	Insights into the Active Electrocatalytic Areas of Layered Double Hydroxide and Amorphous Nickel–Iron Oxide Oxygen Evolution Electrocatalysts. ACS Applied Energy Materials, 2018, 1, 1415-1423.	5.1	23
14	Characterizing Electrocatalysts with Scanning Electrochemical Microscopy. Industrial & Engineering Chemistry Research, 2018, 57, 7431-7440.	3.7	21
15	Microwave-assisted synthesis of a nanoamorphous (Ni _{0.8} ,Fe _{0.2}) oxide oxygen-evolving electrocatalyst containing only "fast―sites. Journal of Materials Chemistry A, 2017, 5, 11661-11670.	10.3	36
16	Selective electrochemical CO ₂ reduction to CO using in situ reduced In ₂ O ₃ nanocatalysts. Journal of Materials Chemistry A, 2017, 5, 22743-22749.	10.3	46
17	Nanometer Scale Scanning Electrochemical Microscopy Instrumentation. Analytical Chemistry, 2016, 88, 10284-10289.	6.5	45
18	Electrocatalytic Activity of Individual Pt Nanoparticles Studied by Nanoscale Scanning Electrochemical Microscopy. Journal of the American Chemical Society, 2016, 138, 8560-8568.	13.7	127

#	Article	IF	CITATIONS
19	Intelligent Scanning Electrochemical Microscopy Tip and Substrate Control Utilizing Fuzzy Logic. Electrochimica Acta, 2016, 190, 713-719.	5.2	20
20	Rapid Characterization of Multi-Metallic Electrocatalysts for the Water Splitting Reactions Utilizing Printed Microelectrodes on a Chip. Journal of the Electrochemical Society, 2016, 163, H359-H366.	2.9	10
21	Low-Dimensional Hyperthin FeS ₂ Nanostructures for Efficient and Stable Hydrogen Evolution Electrocatalysis. ACS Catalysis, 2015, 5, 6653-6657.	11.2	145
22	ZnWO ₄ /WO ₃ Composite for Improving Photoelectrochemical Water Oxidation. Journal of Physical Chemistry C, 2013, 117, 15901-15910.	3.1	117
23	Compositional Screening of the Pb–Bi–Mo–O System. Spontaneous Formation of a Composite of <i>p</i> -PbMoO ₄ and <i>n</i> -Bi ₂ O ₃ with Improved Photoelectrochemical Efficiency and Stability. Journal of Physical Chemistry Letters, 2013, 4, 2707-2710.	4.6	36
24	Surface Interrogation Scanning Electrochemical Microscopy (SI-SECM) of Photoelectrochemistry at a W/Mo-BiVO ₄ Semiconductor Electrode: Quantification of Hydroxyl Radicals during Water Oxidation. Journal of Physical Chemistry C, 2013, 117, 12093-12102.	3.1	103
25	Pattern Recognition Correlating Materials Properties of the Elements to Their Kinetics for the Hydrogen Evolution Reaction. Journal of the American Chemical Society, 2013, 135, 15885-15889.	13.7	38
26	The Study of Multireactional Electrochemical Interfaces via a Tip Generation/Substrate Collection Mode of Scanning Electrochemical Microscopy: The Hydrogen Evolution Reaction for Mn in Acidic Solution. Journal of the American Chemical Society, 2013, 135, 15890-15896.	13.7	48
27	Carbonate-Derived Multi-Metal Catalysts for Electrochemical Water-Splitting at High Current Densities. ACS Sustainable Chemistry and Engineering, 0, , .	6.7	9