
Josefa GonzÃ;lez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9576363/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Transposable element variants and their potential adaptive impact in urban populations of the malaria vector <i>Anopheles coluzzii</i> . Genome Research, 2022, 32, 189-202.	5.5	5
2	Population-scale long-read sequencing uncovers transposable elements associated with gene expression variation and adaptive signatures in Drosophila. Nature Communications, 2022, 13, 1948.	12.8	53
3	Temperature, rainfall and wind variables underlie environmental adaptation in natural populations of <i>Drosophila melanogaster</i> . Molecular Ecology, 2021, 30, 938-954.	3.9	15
4	The discovery, distribution, and diversity of DNA viruses associated with <i>Drosophila melanogaster</i> in Europe. Virus Evolution, 2021, 7, veab031.	4.9	25
5	Benchmarking the performance of Poolâ€seq SNP callers using simulated and real sequencing data. Molecular Ecology Resources, 2021, 21, 1216-1229.	4.8	19
6	Broad geographic sampling reveals the shared basis and environmental correlates of seasonal adaptation in Drosophila. ELife, 2021, 10, .	6.0	66
7	Regulatory regions in natural transposable element insertions drive interindividual differences in response to immune challenges in Drosophila. Genome Biology, 2021, 22, 265.	8.8	22
8	<i>Drosophila</i> Evolution over Space and Time (DEST): A New Population Genomics Resource. Molecular Biology and Evolution, 2021, 38, 5782-5805.	8.9	37
9	<i>T-lex3</i> : an accurate tool to genotype and estimate population frequencies of transposable elements using the latest short-read whole genome sequencing data. Bioinformatics, 2020, 36, 1191-1197.	4.1	10
10	Distinct genotypes and phenotypes in European and American strains of Drosophila suzukii: implications for biology and management of an invasive organism. Journal of Pest Science, 2020, 93, 77-89.	3.7	29
11	Genomic Analysis of European Drosophila melanogaster Populations Reveals Longitudinal Structure, Continent-Wide Selection, and Previously Unknown DNA Viruses. Molecular Biology and Evolution, 2020, 37, 2661-2678.	8.9	104
12	Identifying chromosomal subpopulations based on their recombination histories advances the study of the genetic basis of phenotypic traits. Genome Research, 2020, 30, 1802-1814.	5.5	4
13	Polymorphic Inversions Underlie the Shared Genetic Susceptibility of Obesity-Related Diseases. American Journal of Human Genetics, 2020, 106, 846-858.	6.2	11
14	Genomic adaptations to aquatic and aerial life in mayflies and the origin of insect wings. Nature Communications, 2020, 11, 2631.	12.8	57
15	Transposable elements contribute to the genomic response to insecticides in <i>Drosophila melanogaster</i> . Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190341.	4.0	27
16	Transposable Elements in Anopheles Species: Refining Annotation Strategies Towards Population Genomics Analyses. Population Genomics, 2020, , 1.	0.5	1
17	New Insights on the Evolution of Genome Content: Population Dynamics of Transposable Elements in Flies and Humans. Methods in Molecular Biology, 2019, 1910, 505-530.	0.9	21
18	A new species in the major malaria vector complex sheds light on reticulated species evolution. Scientific Reports, 2019, 9, 14753.	3.3	56

Josefa GonzÃilez

#	Article	IF	CITATIONS
19	A unique cluster of roo insertions in the promoter region of a stress response gene in Drosophila melanogaster. Mobile DNA, 2019, 10, 10.	3.6	8
20	Diverse families of transposable elements affect the transcriptional regulation of stress-response genes in Drosophila melanogaster. Nucleic Acids Research, 2019, 47, 6842-6857.	14.5	29
21	Stress response, behavior, and development are shaped by transposable element-induced mutations in Drosophila. PLoS Genetics, 2019, 15, e1007900.	3.5	64
22	A benchmark of transposon insertion detection tools using real data. Mobile DNA, 2019, 10, 53.	3.6	47
23	Evolutionary insights from large scale resequencing datasets in Drosophila melanogaster. Current Opinion in Insect Science, 2019, 31, 70-76.	4.4	8
24	Populationâ€ s pecific dynamics and selection patterns of transposable element insertions in European natural populations. Molecular Ecology, 2019, 28, 1506-1522.	3.9	45
25	Genome-wide patterns of local adaptation in Western European Drosophila melanogaster natural populations. Scientific Reports, 2018, 8, 16143.	3.3	22
26	Transposable Elements Contribute to the Adaptation of Arabidopsis thaliana. Genome Biology and Evolution, 2018, 10, 2140-2150.	2.5	56
27	Stress affects the epigenetic marks added by natural transposable element insertions in Drosophila melanogaster. Scientific Reports, 2018, 8, 12197.	3.3	29
28	Natural and laboratory mutations in kuzbanian are associated with zinc stress phenotypes in Drosophila melanogaster. Scientific Reports, 2017, 7, 42663.	3.3	9
29	Revisiting the Relationship between Transposable Elements and the Eukaryotic Stress Response. Trends in Genetics, 2017, 33, 832-841.	6.7	152
30	Beyond <scp>SNP</scp> s: how to detect selection on transposable element insertions. Methods in Ecology and Evolution, 2017, 8, 728-737.	5.2	23
31	Multiple Independent Retroelement Insertions in the Promoter of a Stress Response Gene Have Variable Molecular and Functional Effects in Drosophila. PLoS Genetics, 2016, 12, e1006249.	3.5	46
32	Secondary contact and local adaptation contribute to genomeâ€wide patterns of clinal variation in <i>Drosophila melanogaster</i> . Molecular Ecology, 2016, 25, 1157-1174.	3.9	149
33	Lack of population differentiation patterns of previously identified putatively adaptive transposable element insertions at microgeographic scales. Biology Direct, 2015, 10, 50.	4.6	3
34	The Dominance Effect of the Adaptive Transposable Element Insertion Bari-Jheh Depends on the Genetic Background. Genome Biology and Evolution, 2015, 7, 1260-1266.	2.5	7
35	Exploring the Phenotypic Space and the Evolutionary History of a Natural Mutation in <i>Drosophila melanogaster</i> . Molecular Biology and Evolution, 2015, 32, 1800-1814.	8.9	24
36	T-lex2: genotyping, frequency estimation and re-annotation of transposable elements using single or pooled next-generation sequencing data. Nucleic Acids Research, 2015, 43, e22-e22.	14.5	61

Josefa GonzÃilez

#	Article	IF	CITATIONS
37	Pogo-like Transposases Have Been Repeatedly Domesticated into CENP-B-Related Proteins. Genome Biology and Evolution, 2014, 6, 2008-2016.	2.5	38
38	Adaptation through chromosomal inversions in Anopheles. Frontiers in Genetics, 2014, 5, 129.	2.3	75
39	A Transposable Element Insertion Confers Xenobiotic Resistance in Drosophila. PLoS Genetics, 2014, 10, e1004560.	3.5	95
40	Population Genomics of Transposable Elements in <i>Drosophila</i> . Annual Review of Genetics, 2014, 48, 561-581.	7.6	144
41	The transposable element <i>Bariâ€heh</i> mediates oxidative stress response in Drosophila. Molecular Ecology, 2014, 23, 2020-2030.	3.9	82
42	The impact of transposable elements in environmental adaptation. Molecular Ecology, 2013, 22, 1503-1517.	3.9	464
43	Segmental Duplication, Microinversion, and Gene Loss Associated with a Complex Inversion Breakpoint Region in Drosophila. Molecular Biology and Evolution, 2012, 29, 1875-1889.	8.9	31
44	Evolution of Genome Content: Population Dynamics of Transposable Elements in Flies and Humans. Methods in Molecular Biology, 2012, 855, 361-383.	0.9	41
45	Empirical Validation of Pooled Whole Genome Population Re-Sequencing in Drosophila melanogaster. PLoS ONE, 2012, 7, e41901.	2.5	84
46	Population Genomics of Transposable Elements in Drosophila melanogaster. Molecular Biology and Evolution, 2011, 28, 1633-1644.	8.9	160
47	T-lex: a program for fast and accurate assessment of transposable element presence using next-generation sequencing data. Nucleic Acids Research, 2011, 39, e36-e36.	14.5	53
48	Genome-Wide Patterns of Adaptation to Temperate Environments Associated with Transposable Elements in Drosophila. PLoS Genetics, 2010, 6, e1000905.	3.5	137
49	MITEs—The Ultimate Parasites. Science, 2009, 325, 1352-1353.	12.6	17
50	A Recent Adaptive Transposable Element Insertion Near Highly Conserved Developmental Loci in Drosophila melanogaster. Molecular Biology and Evolution, 2009, 26, 1949-1961.	8.9	58
51	Cloning and sequencing of the breakpoint regions of inversion 5g fixed in Drosophila buzzatii. Chromosoma, 2009, 118, 349-360.	2.2	12
52	Bottlenecks, population differentiation and apparent selection at microsatellite loci in Australian Drosophila buzzatii. Heredity, 2009, 102, 389-401.	2.6	29
53	The adaptive role of transposable elements in the Drosophila genome. Gene, 2009, 448, 124-133.	2.2	82
54	Nonadaptive Explanations for Signatures of Partial Selective Sweeps in Drosophila. Molecular Biology and Evolution, 2008, 25, 1025-1042.	8.9	21

Josefa GonzÃilez

#	Article	IF	CITATIONS
55	High Rate of Recent Transposable Element–Induced Adaptation in Drosophila melanogaster. PLoS Biology, 2008, 6, e251.	5.6	176
56	Inferring the Strength of Selection in Drosophila under Complex Demographic Models. Molecular Biology and Evolution, 2008, 26, 513-526.	8.9	28
57	Testing Chromosomal Phylogenies and Inversion Breakpoint Reuse in Drosophila. Genetics, 2007, 175, 167-177.	2.9	27
58	Abundance and chromosomal distribution of six Drosophila buzzatii transposons: BuT1, BuT2, BuT3, BuT4, BuT5, and BuT6. Chromosoma, 2006, 115, 403-412.	2.2	17
59	A BAC-based physical map of the Drosophila buzzatii genome. Genome Research, 2005, 15, 885-889.	5.5	21
60	Molecular Characterization and Chromosomal Distribution of Galileo, Kepler and Newton, Three Foldback Transposable Elements of the Drosophila buzzatii Species ComplexSequence data from this article have been deposited in the EMBL/GenBank Data Libraries under accession nos. AY756161, AY756162, AY756163, AY756164, AY756165, AY756166, AY756167, AY756168, AY756169, AY756170 Geneti	2.9 cs, 2005,	27
61	169, 2047-2059. Duplicative and Conservative Transpositions of Larval serum protein 1 Genes in the Genus DrosophilaSequence data from this article have been deposited with the EMBL/GenBank Data Libraries under accession nos. AY561258 and AY561259 Genetics, 2004, 168, 253-264.	2.9	12
62	LOW OCCURRENCE OF GENE TRANSPOSITION EVENTS DURING THE EVOLUTION OF THE GENUS DROSOPHILA. Evolution; International Journal of Organic Evolution, 2003, 57, 1325-1335.	2.3	42
63	LOW OCCURRENCE OF GENE TRANSPOSITION EVENTS DURING THE EVOLUTION OF THE GENUS DROSOPHILA. Evolution; International Journal of Organic Evolution, 2003, 57, 1325.	2.3	11
64	Chromosomal Elements Evolve at Different Rates in the Drosophila Genome. Genetics, 2002, 161, 1137-1154.	2.9	51
65	Molecular organization of the Drosophila melanogaster Adh chromosomal region in D. repleta and D. buzzatii, two distantly related species of the Drosophila subgenus. Chromosome Research, 2000, 8, 375, 385	2.2	9