
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9576240/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Phonon-Enhanced Mid-Infrared CO ₂ Gas Sensing Using Boron Nitride Nanoresonators. ACS Photonics, 2022, 9, 34-42.	6.6	17
2	Neural network assisted design of plasmonic nanostructures on superconducting transition-edge-sensors for single photon detectors. Optics Express, 2022, 30, 12368.	3.4	2
3	Entangled two-plasmon generation in carbon nanotubes and graphene-coated wires. Physical Review B, 2022, 105, .	3.2	0
4	Twisted Two-Dimensional Material Stacks for Polarization Optics. Physical Review Letters, 2022, 128, .	7.8	8
5	Spoof surface plasmon photonics. Reviews of Modern Physics, 2022, 94, .	45.6	60
6	Ultrastrong plasmon–phonon coupling via epsilon-near-zero nanocavities. Nature Photonics, 2021, 15, 125-130.	31.4	78
7	Plasmonic Split-Trench Resonator for Trapping and Sensing. ACS Nano, 2021, 15, 6669-6677.	14.6	17
8	Interband plasmon polaritons in magnetized charge-neutral graphene. Communications Physics, 2021, 4, .	5.3	2
9	Hyperspectral Nanoimaging of van der Waals Polaritonic Crystals. Nano Letters, 2021, 21, 7109-7115.	9.1	13
10	Plasmonic antenna coupling to hyperbolic phonon-polaritons for sensitive and fast mid-infrared photodetection with graphene. Nature Communications, 2020, 11, 4872.	12.8	53
11	Chiral Current Circulation and PT Symmetry in a Trimer of Oscillators. ACS Photonics, 2020, 7, 3401-3414.	6.6	18
12	Interrogating hot electrons in tunnel junctions. Science, 2020, 369, 375-376.	12.6	3
13	Nonlocal Quantum Effects in Plasmons of Graphene Superlattices. Physical Review Letters, 2020, 124, 257401.	7.8	3
14	Ultrastrong coupling effects in molecular cavity QED. Nanophotonics, 2020, 9, 277-281.	6.0	9
15	Plasmonic Dirac Cone in Twisted Bilayer Graphene. Physical Review Letters, 2020, 125, 256804.	7.8	21
16	Terahertz and infrared nonlocality and field saturation in extreme-scale nanoslits. Optics Express, 2020, 28, 8701.	3.4	4
17	Polaritonic Tamm states induced by cavity photons. Nanophotonics, 2020, 10, 513-521.	6.0	13
18	Launching of hyperbolic phonon-polaritons in h-BN slabs by resonant metal plasmonic antennas. Nature Communications, 2019, 10, 3242.	12.8	56

#	Article	IF	CITATIONS
19	Single Photons by Quenching the Vacuum. Physical Review Letters, 2019, 123, 013601.	7.8	26
20	Topological Phases of Polaritons in a Cavity Waveguide. Physical Review Letters, 2019, 123, 217401.	7.8	38
21	Deeply subwavelength phonon-polaritonic crystal made of a van der Waals material. Nature Communications, 2019, 10, 42.	12.8	51
22	Strain-induced large Faraday rotation in graphene at subtesla external magnetic fields. Physical Review Research, 2019, 1, .	3.6	4
23	High-Contrast Infrared Absorption Spectroscopy via Mass-Produced Coaxial Zero-Mode Resonators with Sub-10 nm Gaps. Nano Letters, 2018, 18, 1930-1936.	9.1	88
24	Emergent causality and theN-photon scattering matrix in waveguide QED. New Journal of Physics, 2018, 20, 013017.	2.9	8
25	Anisotropic Acoustic Plasmons in Black Phosphorus. ACS Photonics, 2018, 5, 2208-2216.	6.6	54
26	Polariton Anomalous Hall Effect in Transition-Metal Dichalcogenides. Physical Review Letters, 2018, 121, 137402.	7.8	14
27	Magnetoplasmonic enhancement of Faraday rotation in patterned graphene metasurfaces. Physical Review B, 2018, 97, .	3.2	27
28	Surface-Enhanced Infrared Absorption Spectroscopy via Coaxial Zero-Mode Resonators with Sub-10-nm Gaps. , 2018, , .		0
29	Electrically controlled terahertz magneto-optical phenomena in continuous and patterned graphene. Nature Communications, 2017, 8, 14626.	12.8	93
30	Unrelenting plasmons. Nature Photonics, 2017, 11, 8-10.	31.4	66
31	Acoustic Graphene Plasmon Nanoresonators for Field-Enhanced Infrared Molecular Spectroscopy. ACS Photonics, 2017, 4, 3089-3097.	6.6	43
32	Dynamical signatures of bound states in waveguide QED. Physical Review A, 2017, 96, .	2.5	55
33	Graphene Plasmon Reflection by Corrugations. ACS Photonics, 2017, 4, 3081-3088.	6.6	30
34	Basics of Nanoplasmonics. World Scientific Series in Nanoscience and Nanotechnology, 2017, , 1-19.	0.1	0
35	Tunable plasmon-enhanced birefringence in ribbon array of anisotropic two-dimensional materials. Physical Review B, 2017, 95, .	3.2	29
36	Micropillar Templates for Dielectric Filled Metal Arrays and Flexible Metamaterials. Advanced Optical Materials, 2017, 5, 1600670.	7.3	10

#	Article	IF	CITATIONS
37	Polaritons in layered two-dimensional materials. Nature Materials, 2017, 16, 182-194.	27.5	963
38	Angle resolved transmission through metal hole gratings. Optics Express, 2017, 25, 9061.	3.4	2
39	One- and two-photon scattering from generalized V-type atoms. Physical Review A, 2016, 94, .	2.5	9
40	Waveguide and Plasmonic Absorption-Induced Transparency. ACS Nano, 2016, 10, 4570-4578.	14.6	16
41	Faraday effect in rippled graphene: Magneto-optics and random gauge fields. Physical Review B, 2016, 94, .	3.2	9
42	Full two-photon down-conversion of a single photon. Physical Review A, 2016, 94, .	2.5	31
43	Extraordinary Optical Transmission: Fundamentals and Applications. Proceedings of the IEEE, 2016, 104, 2288-2306.	21.3	77
44	Molecular detection with terahertz waves based on absorption-induced transparency metamaterials. Proceedings of SPIE, 2016, , .	0.8	1
45	Absorption-induced transparency metamaterials in the terahertz regime. Optics Letters, 2016, 41, 293.	3.3	14
46	High-Throughput Fabrication of Resonant Metamaterials with Ultrasmall Coaxial Apertures via Atomic Layer Lithography. Nano Letters, 2016, 16, 2040-2046.	9.1	84
47	Ultraefficient Coupling of a Quantum Emitter to the Tunable Guided Plasmons of a Carbon Nanotube. Physical Review Letters, 2015, 115, 173601.	7.8	47
48	Stacking Structures of Few-Layer Graphene Revealed by Phase-Sensitive Infrared Nanoscopy. ACS Nano, 2015, 9, 6765-6773.	14.6	35
49	Magnetic localized surface plasmons supported by metal structures. , 2015, , .		0
50	Nonlinear quantum optics in the (ultra)strong light–matter coupling. Faraday Discussions, 2015, 178, 335-356.	3.2	25
51	Mechanisms for photon sorting based on slit–groove arrays. Photonics and Nanostructures - Fundamentals and Applications, 2015, 13, 58-65.	2.0	1
52	Second-harmonic generation from metallic arrays of rectangular holes. Journal of the Optical Society of America B: Optical Physics, 2015, 32, 15.	2.1	17
53	Scattering in the Ultrastrong Regime: Nonlinear Optics with One Photon. Physical Review Letters, 2014, 113, 263604.	7.8	106

54 Magnetic localized surface plasmons. , 2014, , .

#	Article	IF	CITATIONS
55	Reversible dynamics of single quantum emitters near metal-dielectric interfaces. Physical Review B, 2014, 89, .	3.2	67
56	Broadband and broadangle extraordinary acoustic transmission through subwavelength apertures surrounded by fluids. New Journal of Physics, 2014, 16, 083044.	2.9	7
57	Transmittance of a subwavelength aperture flanked by a finite groove array placed near the focus of a conventional lens. Journal of the Optical Society of America B: Optical Physics, 2014, 31, 1653.	2.1	3
58	Substrate-Sensitive Mid-infrared Photoresponse in Graphene. ACS Nano, 2014, 8, 8350-8356.	14.6	30
59	Anomalous reflection phase of graphene plasmons and its influence on resonators. Physical Review B, 2014, 90, .	3.2	97
60	Magnetic Localized Surface Plasmons. Physical Review X, 2014, 4, .	8.9	77
61	Theory of absorption-induced transparency. , 2014, , .		0
62	Faraday Rotation Due to Excitation of Magnetoplasmons in Graphene Microribbons. ACS Nano, 2013, 7, 9780-9787.	14.6	106
63	Theory of absorption-induced transparency. Physical Review B, 2013, 88, .	3.2	25
64	Strong Plasmon Reflection at Nanometer-Size Gaps in Monolayer Graphene on SiC. Nano Letters, 2013, 13, 6210-6215.	9.1	121
65	Graphene supports the propagation of subwavelength optical solitons. Laser and Photonics Reviews, 2013, 7, L7.	8.7	117
66	Theory of Strong Coupling between Quantum Emitters and Propagating Surface Plasmons. Physical Review Letters, 2013, 110, 126801.	7.8	151
67	Weak and strong coupling regimes in plasmonic QED. Physical Review B, 2013, 87, .	3.2	131
68	Scattering of Graphene Plasmons by Defects in the Graphene Sheet. ACS Nano, 2013, 7, 4988-4994.	14.6	99
69	Coherent and Broadband Enhanced Optical Absorption in Graphene. ACS Nano, 2013, 7, 4810-4817.	14.6	190
70	Analytical Expressions for the Electromagnetic Dyadic Green's Function in Graphene and Thin Layers. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19, 4600611-4600611.	2.9	44
71	Special issue on graphene nanophotonics. Journal of Optics (United Kingdom), 2013, 15, 110201.	2.2	5
72	Analytical solution for the diffraction of an electromagnetic wave by a graphene grating. Journal of Optics (United Kingdom), 2013, 15, 114008.	2.2	54

#	Article	IF	CITATIONS
73	Optimal light harvesting structures at optical and infrared frequencies. Optics Express, 2012, 20, 25441.	3.4	11
74	Subwavelength chiral surface plasmons that carry tuneable orbital angular momentum. Physical Review B, 2012, 86, .	3.2	31
75	Interference of surface plasmon polaritons excited at hole pairs in thin gold films. Applied Physics Letters, 2012, 101, 201102.	3.3	14
76	Effect of film thickness and dielectric environment on optical transmission through subwavelength holes. Physical Review B, 2012, 85, .	3.2	34
77	Terahertz wave control enabled by nano objects embedded in slot antennas. , 2012, , .		0
78	Gain-assisted extraordinary optical transmission through periodic arrays of subwavelength apertures. New Journal of Physics, 2012, 14, 013020.	2.9	23
79	Resonant plasmonic effects in periodic graphene antidot arrays. Applied Physics Letters, 2012, 101, .	3.3	137
80	Transformation plasmonics. Nanophotonics, 2012, 1, 51-64.	6.0	39
81	Exploring qubit-qubit entanglement mediated by one-dimensional plasmonic nanowaveguides. Physica Status Solidi C: Current Topics in Solid State Physics, 2012, 9, 1303-1308.	0.8	6
82	Superradiance mediated by graphene surface plasmons. Physical Review B, 2012, 85, .	3.2	80
83	Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons. Physical Review B, 2012, 85, .	3.2	373
84	Localized Spoof Plasmons Arise while Texturing Closed Surfaces. Physical Review Letters, 2012, 108, 223905.	7.8	280
85	Diffraction Regimes of Single Holes. Physical Review Letters, 2012, 109, 023901.	7.8	33
86	Entanglement of Two Qubits Mediated by One-Dimensional Plasmonic Waveguides. Physical Review Letters, 2011, 106, 020501.	7.8	443
87	Comparative study of surface plasmon scattering by shallow ridges and grooves. Physical Review B, 2011, 83, .	3.2	18
88	Dyakonov surface wave resonant transmission. Optics Express, 2011, 19, 6339.	3.4	14
89	Mechanisms for extraordinary optical transmission through bull's eye structures. Optics Express, 2011, 19, 10429.	3.4	66
90	Waveguided spoof surface plasmons with deep-subwavelength lateral confinement. Optics Letters, 2011, 36, 4635.	3.3	62

#	Article	IF	CITATIONS
91	Controlling Terahertz Radiation with Nanoscale Metal Barriers Embedded in Nano Slot Antennas. ACS Nano, 2011, 5, 8340-8345.	14.6	66
92	A holey-structured metamaterial for acoustic deep-subwavelength imaging. Nature Physics, 2011, 7, 52-55.	16.7	533
93	Dissipation-driven generation of two-qubit entanglement mediated by plasmonic waveguides. Physical Review B, 2011, 84, .	3.2	146
94	Fields radiated by a nanoemitter in a graphene sheet. Physical Review B, 2011, 84, .	3.2	188
95	Edge and waveguide terahertz surface plasmon modes in graphene microribbons. Physical Review B, 2011, 84, .	3.2	451
96	Role of surface plasmon polaritons in the optical response of a hole pair. Physical Review B, 2011, 84, .	3.2	6
97	Moulding the flow of surface plasmons using conformal and quasiconformal mappings. New Journal of Physics, 2011, 13, 033011.	2.9	22
98	Resonant transmission mediated by Dyakonov surface waves. , 2011, , .		0
99	Oblique launching of optical surface waves by a subwavelength slit. Physical Review B, 2011, 83, .	3.2	4
100	Metallic slit arrays filled with third-order nonlinear media: Optical Kerr effect and third-harmonic generation. Physical Review B, 2011, 83, .	3.2	14
101	Plasmonic waveguides for classical and quantum applications. , 2011, , .		0
102	Anomalous Band Formation in Arrays of Terahertz Nanoresonators. Physical Review Letters, 2011, 106, 013902.	7.8	32
103	Effect of defect depth on surface plasmon scattering by subwavelength surface defects. Physical Review B, 2011, 83, .	3.2	15
104	Enhanced transmission of s-polarized light through a metal slit. , 2010, , .		0
105	Nanostructured metallic surfaces for enhanced transmission and polarization filtering in CMOS fabricated photodetectors. Proceedings of SPIE, 2010, , .	0.8	0
106	Influence of the dielectric substrate on the field emitted by a subwavelength slit in a metal film. Physica Status Solidi - Rapid Research Letters, 2010, 4, 250-252.	2.4	7
107	Enhanced acoustical transmission and beaming effect through a single aperture. Physical Review B, 2010, 81, .	3.2	66
108	All-angle blockage of sound by an acoustic double-fishnet metamaterial. Applied Physics Letters, 2010, 97, 134106.	3.3	36

#	Article	IF	CITATIONS
109	Optical transmission of periodic annular apertures in metal film on high-refractive index substrate: The role of the nanopillar shape. Applied Physics Letters, 2010, 96, .	3.3	13
110	Collimation of horizontally polarized shear waves by means of ridge grating supported Love modes. Applied Physics Letters, 2010, 96, 233505.	3.3	4
111	Dual band terahertz waveguiding on a planar metal surface patterned with annular holes. Applied Physics Letters, 2010, 96, .	3.3	40
112	Resonance Energy Transfer and Superradiance Mediated by Plasmonic Nanowaveguides. Nano Letters, 2010, 10, 3129-3134.	9.1	201
113	Observation of enhanced transmission for s-polarized light through a subwavelength slit. Optics Express, 2010, 18, 9722.	3.4	30
114	Optimization of bull's eye structures for transmission enhancement. Optics Express, 2010, 18, 11292.	3.4	86
115	Holes with very acute angles: a new paradigm of extraordinary optical transmission through strongly localized modes. Optics Express, 2010, 18, 23691.	3.4	37
116	Geometrically induced modification of surface plasmons in the optical and telecom regimes. Optics Letters, 2010, 35, 423.	3.3	22
117	Optical switching in metal-slit arrays on nonlinear dielectric substrates. Optics Letters, 2010, 35, 4211.	3.3	17
118	Domino plasmons for subwavelength terahertz circuitry. Optics Express, 2010, 18, 754.	3.4	244
119	Light passing through subwavelength apertures. Reviews of Modern Physics, 2010, 82, 729-787.	45.6	1,104
120	Surface Electromagnetic Field Radiated by a Subwavelength Hole in a Metal Film. Physical Review Letters, 2010, 105, 073902.	7.8	77
121	Transformation Optics for Plasmonics. Nano Letters, 2010, 10, 1985-1990.	9.1	200
122	Enhanced transmission from a single subwavelength slit aperture surrounded by grooves on a standard detector. Applied Physics Letters, 2009, 95, .	3.3	18
123	Holey metal films make perfect endoscopes. Physical Review B, 2009, 79, .	3.2	26
124	Opening the light extraction cone of high index substrates with plasmonic gratings: Light emitting diode applications. Applied Physics Letters, 2009, 95, 021101.	3.3	19
125	In the diffraction shadow: Norton waves versus surface plasmon polaritons in the optical region. New Journal of Physics, 2009, 11, 123020.	2.9	63
126	Detecting unseen light. Nature Physics, 2009, 5, 457-458.	16.7	11

#	Article	IF	CITATIONS
127	Plasmonic candle: towards efficient nanofocusing with channel plasmon polaritons. New Journal of Physics, 2009, 11, 113043.	2.9	15
128	Extraordinary optical transmission through hole arrays in optically thin metal films. Optics Letters, 2009, 34, 4.	3.3	61
129	Terahertz wedge plasmon polaritons. Optics Letters, 2009, 34, 2063.	3.3	112
130	Polarization conversion spectroscopy of hybrid modes. Optics Letters, 2009, 34, 3911.	3.3	8
131	Extraordinary transmission through metal-coated monolayers of microspheres. Optics Express, 2009, 17, 761.	3.4	68
132	Efficient unidirectional ridge excitation of surface plasmons. Optics Express, 2009, 17, 7228.	3.4	103
133	Bragg reflection of terahertz waves in plasmonic crystals. Optics Express, 2009, 17, 9212.	3.4	18
134	Light transmission properties of holey metal films in the metamaterial limit: effective medium theory and subwavelength imaging. New Journal of Physics, 2009, 11, 123013.	2.9	8
135	Enhanced optical transmission, beaming and focusing through a subwavelength slit under excitation of dielectric waveguide modes. Journal of Optics, 2009, 11, 125702.	1.5	21
136	Nanofocusing with Channel Plasmon Polaritons. Nano Letters, 2009, 9, 1278-1282.	9.1	136
137	Holey metal films: From extraordinary transmission to negative-index behavior. Physical Review B, 2009, 80, .	3.2	29
138	Intercoupling of free-space radiation to s-polarized confined modes via nanocavities. Applied Physics Letters, 2009, 94, 063119.	3.3	12
139	Annular holes and their arrays for light extraction from high refractive index substrates , 2009, , .		0
140	Guiding terahertz waves along subwavelength channels. Physical Review B, 2009, 79, .	3.2	104
141	Theory of Resonant Acoustic Transmission through Subwavelength Apertures. Physical Review Letters, 2008, 101, 014301.	7.8	224
142	Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces. Nature Photonics, 2008, 2, 175-179.	31.4	553
143	Spoof Surface Plasmon Polariton Modes Propagating Along Periodically Corrugated Wires. IEEE Journal of Selected Topics in Quantum Electronics, 2008, 14, 1515-1521.	2.9	84
144	Efficiency of local surface plasmon polariton excitation on ridges. Physical Review B, 2008, 78, .	3.2	88

#	Article	IF	CITATIONS
145	Coupling efficiency of light to surface plasmon polariton for single subwavelength holes in a gold film. Optics Express, 2008, 16, 3420.	3.4	72
146	Efficiency and finite size effects in enhanced transmission through subwavelength apertures. Optics Express, 2008, 16, 9571.	3.4	82
147	Optical Control over Surface-Plasmon-Polariton-Assisted THz Transmission through a Slit Aperture. Physical Review Letters, 2008, 100, 123901.	7.8	125
148	Electromagnetic wave transmission through a small hole in a perfect electric conductor of finite thickness. Physical Review B, 2008, 78, .	3.2	46
149	Theory of Negative-Refractive-Index Response of Double-Fishnet Structures. Physical Review Letters, 2008, 101, 103902.	7.8	163
150	Transmission Resonances Through a Fibonacci Array of Subwavelength Slits. Electromagnetics, 2008, 28, 186-197.	0.7	6
151	Efficiency of local surface plasmon polariton excitation on ridges. Proceedings of SPIE, 2008, , .	0.8	3
152	Minimal model for optical transmission through holey metal films. Journal of Physics Condensed Matter, 2008, 20, 304214.	1.8	27
153	Modulation of surface plasmon coupling-in by one-dimensional surface corrugation. New Journal of Physics, 2008, 10, 033035.	2.9	30
154	Plasmonic metamaterials based on holey metallic films. Journal of Physics Condensed Matter, 2008, 20, 304215.	1.8	16
155	Theory on the scattering of light and surface plasmon polaritons by arrays of holes and dimples in a metal film. New Journal of Physics, 2008, 10, 105017.	2.9	59
156	Guiding and Focusing of Electromagnetic Fields with Wedge Plasmon Polaritons. Physical Review Letters, 2008, 100, 023901.	7.8	305
157	Scattering of surface plasmon polaritons by impedance barriers: Dependence on angle of incidence. Physical Review B, 2008, 77, .	3.2	17
158	Resonant transmission and beaming of cold atoms assisted by surface matter waves. Physical Review A, 2008, 78, .	2.5	5
159	Confining and slowing airborne sound with a corrugated metawire. Applied Physics Letters, 2008, 93, 083502.	3.3	35
160	Terahertz surface plasmon polaritons on a helically grooved wire. Applied Physics Letters, 2008, 93, .	3.3	54
161	Influence of material properties on extraordinary optical transmission through hole arrays. Physical Review B, 2008, 77, .	3.2	168
162	Surface plasmon polariton scattering by finite-size nanoparticles. Physical Review B, 2007, 76, .	3.2	48

#	Article	IF	CITATIONS
163	Theory of Extraordinary Transmission of Light through Quasiperiodic Arrays of Subwavelength Holes. Physical Review Letters, 2007, 99, 203905.	7.8	53
164	Spectroscopy and nonlinear microscopy of gold nanoparticle arrays on gold films. Physical Review B, 2007, 75, .	3.2	48
165	Resonant transmission of light through finite arrays of slits. Physical Review B, 2007, 76, .	3.2	38
166	Scattering coefficients of surface plasmon polaritons impinging at oblique incidence onto one-dimensional surface relief defects. Physical Review B, 2007, 75, .	3.2	12
167	Theory of light transmission through an array of rectangular holes. Physical Review B, 2007, 76, .	3.2	81
168	Transmission of light through periodic arrays of square holes: From a metallic wire mesh to an array of tiny holes. Physical Review B, 2007, 76, .	3.2	36
169	Comparison of finite-difference time-domain simulations and experiments on the optical properties of gold nanoparticle arrays on gold film. Journal of Optics, 2007, 9, S366-S371.	1.5	15
170	Scattering of surface plasmon polaritons by one-dimensional inhomogeneities. Physical Review B, 2007, 75, .	3.2	53
171	Heat production and energy balance in nanoscale engines driven by time-dependent fields. Physical Review B, 2007, 75, .	3.2	78
172	Efficient unidirectional nanoslit couplers for surface plasmons. Nature Physics, 2007, 3, 324-328.	16.7	461
173	Collimation of sound assisted by acoustic surface waves. Nature Physics, 2007, 3, 851-852.	16.7	249
174	Normal-incidence scattering of surface plasmon polaritons by one-dimensional nanoindentations: a multimodal description. Applied Physics A: Materials Science and Processing, 2007, 89, 251-258.	2.3	14
175	THEORY OF LIGHT TRANSMISSION THROUGH PERIODICALLY STRUCTURED NANO-APERTURES. , 2007, , 27-38.		0
176	Spectroscopy and nonlinear microscopy of Au nanoparticle arrays: Experiment and theory. Physical Review B, 2006, 73, .	3.2	67
177	Resonant Transmission of Light Through Subwavelength Holes in Thick Metal Films. IEEE Journal of Selected Topics in Quantum Electronics, 2006, 12, 1221-1227.	2.9	17
178	Extraordinary optical transmission without plasmons: the s-polarization case. Journal of Optics, 2006, 8, S94-S97.	1.5	94
179	Terahertz Surface Plasmon-Polariton Propagation and Focusing on Periodically Corrugated Metal Wires. Physical Review Letters, 2006, 97, 176805.	7.8	682
180	Channel plasmon-polaritons: modal shape, dispersion, and losses. Optics Letters, 2006, 31, 3447.	3.3	190

#	Article	IF	CITATIONS
181	Theory of optical transmission through arrays of subwavelength apertures. Handai Nanophotonics, 2006, , 15-29.	0.0	0
182	How light emerges from an illuminated array of subwavelength holes. Nature Physics, 2006, 2, 120-123.	16.7	97
183	Foundations of the composite diffracted evanescent wave model. Nature Physics, 2006, 2, 790-790.	16.7	20
184	Transmission of light through a single rectangular hole in a real metal. Physical Review B, 2006, 74, .	3.2	132
185	Beaming matter waves from a subwavelength aperture. Physical Review A, 2006, 74, .	2.5	11
186	Extraordinary electromagnetic transmission through finite arrays of holes in a metal film. , 2005, , .		0
187	Resonant Transmission of Cold Atoms through Subwavelength Apertures. Physical Review Letters, 2005, 95, 170406.	7.8	31
188	Transmission of Light through a Single Rectangular Hole. Physical Review Letters, 2005, 95, 103901.	7.8	363
189	Enhanced millimeter wave transmission through quasioptical subwavelength perforated plates. IEEE Transactions on Antennas and Propagation, 2005, 53, 1897-1903.	5.1	87
190	Surfaces with holes in them: new plasmonic metamaterials. Journal of Optics, 2005, 7, S97-S101.	1.5	920
191	Scattering of surface plasmons by one-dimensional periodic nanoindented surfaces. Physical Review B, 2005, 72, .	3.2	83
192	Optical Transmission through Periodically Nano-structured Metal Films. Advances in Solid State Physics, 2004, , 69-80.	0.8	3
193	Resonant Transmission of Light Through Finite Chains of Subwavelength Holes in a Metallic Film. Physical Review Letters, 2004, 93, 227401.	7.8	118
194	Transmission properties of a single metallic slit: From the subwavelength regime to the geometrical-optics limit. Physical Review E, 2004, 69, 026601.	2.1	129
195	Theory of Plasmon-Assisted Transmission of Entangled Photons. Physical Review Letters, 2004, 92, 236801.	7.8	52
196	Mimicking Surface Plasmons with Structured Surfaces. Science, 2004, 305, 847-848.	12.6	2,754
197	Efficient coupling of light into and out of a photonic crystal waveguide via surface modes. Photonics and Nanostructures - Fundamentals and Applications, 2004, 2, 97-102.	2.0	28
198	Optical bistability in subwavelength slit apertures containing nonlinear media. Physical Review B, 2004, 70, .	3.2	76

#	Article	IF	CITATIONS
199	Enhanced transmission and beaming of light via photonic crystal surface modes. Physical Review B, 2004, 69, .	3.2	189
200	Transmission in cut-off hole arrays. , 2004, , .		1
201	Optical transmission through circular hole arrays in optically thick metal films. Optics Express, 2004, 12, 3619.	3.4	103
202	Enhanced millimeter-wave transmission through subwavelength hole arrays. Optics Letters, 2004, 29, 2500.	3.3	175
203	Focusing light with a single subwavelength aperture flanked by surface corrugations. Applied Physics Letters, 2003, 83, 4500-4502.	3.3	220
204	Multiple Paths to Enhance Optical Transmission through a Single Subwavelength Slit. Physical Review Letters, 2003, 90, 213901.	7.8	448
205	Theory of Highly Directional Emission from a Single Subwavelength Aperture Surrounded by Surface Corrugations. Physical Review Letters, 2003, 90, 167401.	7.8	526
206	Chessboard Magnetoconductance of a Quantum Dot in the Kondo Regime. , 2003, , 153-165.		0
207	Beaming Light from a Subwavelength Aperture. Science, 2002, 297, 820-822.	12.6	1,703
208	Transmission and focusing of light in one-dimensional periodically nanostructured metals. Physical Review B, 2002, 66, .	3.2	341
209	Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays. Physical Review Letters, 2001, 86, 1114-1117.	7.8	1,559
210	Quantum dots in high magnetic fields: spin textures and Kondo effect. Solid State Communications, 2001, 117, 133-140.	1.9	1
211	Evanescently coupled resonance in surface plasmon enhanced transmission. Optics Communications, 2001, 200, 1-7.	2.1	413
212	Kondo effect in multielectron quantum dots at high magnetic fields. Physical Review B, 2001, 63, .	3.2	8
213	Canted ground state in artificial molecules at high magnetic fields. Physical Review B, 2000, 62, R10633-R10636.	3.2	21
214	Spin-Isospin Textured Excitations in a Double Layer at Filling Factorν=2. Physical Review Letters, 1999, 83, 2250-2253.	7.8	10
215	Self-Assembled Triply Periodic Minimal Surfaces as Molds for Photonic Band Gap Materials. Physical Review Letters, 1999, 83, 73-75.	7.8	68
216	Thermopower measurements of semiconductor quantum dots. Physica B: Condensed Matter, 1998, 249-251, 281-285.	2.7	8

#	Article	IF	CITATIONS
217	Scattering theory for spin waves in quantum Hall ferromagnets. Physical Review B, 1998, 57, 6618-6622.	3.2	8
218	Spin Textures in Quantum Dots. , 1998, , 127-136.		0
219	Thermoelectric signature of the excitation spectrum of a quantum dot. Physical Review B, 1997, 55, R10197-R10200.	3.2	97
220	Spin textures in quantum Hall droplets. Physica E: Low-Dimensional Systems and Nanostructures, 1997, 1, 47-53.	2.7	2
221	Charge excitations of quantum dots in magnetic fields. Solid-State Electronics, 1996, 40, 21-24.	1.4	1
222	Skyrmions and edge-spin excitations in quantum Hall droplets. Physical Review B, 1996, 54, 16850-16859.	3.2	49
223	The Effect of Completeness of Medical Records on the Determination of Appropriateness of Hospital Days. International Journal for Quality in Health Care, 1995, 7, 267-275.	1.8	19
224	Correlation effects in quantum dots in magnetic fields. Physica B: Condensed Matter, 1995, 212, 224-230.	2.7	4
225	Electron energy loss in dense arrays of metallic particles. Nuclear Instruments & Methods in Physics Research B, 1995, 96, 565-568.	1.4	7
226	Low-Lying Excitations of Quantum Hall Droplets. Physical Review Letters, 1995, 74, 5120-5123.	7.8	45
227	Energy loss by charged particles in complex media. Physical Review B, 1994, 50, 5062-5073.	3.2	61
228	Vertical tunneling between two quantum dots in a transverse magnetic field. Physical Review B, 1994, 49, 8071-8075.	3.2	21
229	Capacitance spectroscopy in quantum dots: Addition spectra and decrease of tunneling rates. Physical Review B, 1994, 50, 5760-5763.	3.2	147
230	The interplay between magnetic field and electron-electron interaction on transport through quantum dots. Superlattices and Microstructures, 1994, 15, 91.	3.1	5
231	Single-electron tunneling and Coulomb charging effects in ultrasmall double-barrier heterostructures. Solid-State Electronics, 1994, 37, 793-799.	1.4	15
232	Ground state properties of interacting electrons in semiconductor quantum dots: Exact and unrestricted hartree-fock results. Solid-State Electronics, 1994, 37, 1179-1182.	1.4	3
233	Correlation effects on transport through few-electrons systems. Surface Science, 1994, 305, 541-546.	1.9	4
234	Many-body effects in quantum dots under magnetic fields. Physica Scripta, 1994, T55, 20-24.	2.5	2

#	Article	IF	CITATIONS
235	Coulomb blockade in resonant magnetotunneling through rectangular quantum dots. Physica B: Condensed Matter, 1993, 189, 27-33.	2.7	2
236	Thermopower of a one-dimensional ballistic constriction in the non-linear regime. Journal of Physics Condensed Matter, 1993, 5, 8055-8064.	1.8	22
237	Magnetotunnelling through Quantum Boxes in a Strong-Correlation Regime. Europhysics Letters, 1993, 23, 495-501.	2.0	30
238	Enhancement of intersubband transition probability in a one-dimensional constriction. Physical Review B, 1993, 47, 4088-4091.	3.2	7
239	Non-linear conductance of a saddle-point constriction. Journal of Physics Condensed Matter, 1992, 4, 1323-1333.	1.8	70
240	Resonant tunneling in anAlxGa1â^'xAs/GaAs quantum dot as a function of magnetic field. Physical Review B, 1992, 46, 3948-3952.	3.2	48
241	Single-electron tunneling and Coulomb charging effects in aysmmetric double-barrier resonant-tunneling diodes. Physical Review B, 1992, 45, 14407-14410.	3.2	67
242	Quantisation of the conductance in units of e2/2h in a ballistic quasi-one-dimensional channel, produced by strong electric and magnetic fields. Superlattices and Microstructures, 1992, 11, 233-235.	3.1	6
243	Multi-terminal phase-coherent magnetoconductance. Superlattices and Microstructures, 1992, 11, 303-307.	3.1	0
244	Causal-surface Green's function method. Surface Science, 1991, 244, 160-176.	1.9	26
245	Electronic structure of amorphous silicon carbide compounds. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1990, 61, 237-250.	0.6	7
246	Ballistic transport in a one-dimensional system with an arbitrary longitudinal potential. Journal of Physics Condensed Matter, 1990, 2, 4017-4017.	1.8	2
247	Ballistic transport in one dimension: additional quantisation produced by an electric field. Journal of Physics Condensed Matter, 1990, 2, 7247-7254.	1.8	59
248	Possibility of finding reliable solid-state tight-binding parameters for the Si-N bond through quantum-chemistry calculations. Physical Review B, 1989, 39, 1844-1855.	3.2	16
249	Effect of under- and overcoordination on the electronic structure of amorphous silicon. Physical Review B, 1989, 39, 3445-3448.	3.2	8
250	Ballistic transport in a one-dimensional system with an arbitrary longitudinal potential. Journal of Physics Condensed Matter, 1989, 1, 5421-5427.	1.8	11
251	Electronic structure, defect states, and optical absorption of amorphousSi1â^'xNx[0≤(1-x)â‰2]. Physical Review B, 1987, 35, 9683-9692.	3.2	58
252	Dispersionless states in random Cayley trees with multiple connectivity. Physical Review B, 1987, 35, 9103-9107.	3.2	0

4

#	Article	IF	CITATIONS
253	Electronic density of states on a randomly dilute Cayley tree. Journal of Physics C: Solid State Physics, 1986, 19, 6751-6760.	1.5	10

Surface electromagnetic waves on structured perfectly conducting surfaces. , 0, , 232-268.