
## Kuo-Chen Chou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9576104/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Using CHOU'S 5-Steps Rule to Predict O-Linked Serine Glycosylation Sites by Blending Position Relative<br>Features and Statistical Moment. IEEE/ACM Transactions on Computational Biology and<br>Bioinformatics, 2021, 18, 2045-2056.                                                                | 1.9 | 30        |
| 2  | iPhosH-PseAAC: Identify Phosphohistidine Sites in Proteins by Blending Statistical Moments and<br>Position Relative Features According to the Chou's 5-Step Rule and General Pseudo Amino Acid<br>Composition. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2021, 18, 596-610. | 1.9 | 70        |
| 3  | The Remarkable Impacts of Gordon Life Science Institute. Natural Science, 2021, 13, 43-75.                                                                                                                                                                                                           | 0.2 | 2         |
| 4  | Proposing Pseudo Amino Acid Components is an Important Milestone for Proteome and Genome<br>Analyses. International Journal of Peptide Research and Therapeutics, 2020, 26, 1085-1098.                                                                                                               | 0.9 | 19        |
| 5  | A Two-Level Computation Model Based on Deep Learning Algorithm for Identification of piRNA and<br>Their Functions via Chou's 5-Steps Rule. International Journal of Peptide Research and Therapeutics,<br>2020, 26, 795-809.                                                                         | 0.9 | 62        |
| 6  | Progresses in Predicting Post-translational Modification. International Journal of Peptide Research and Therapeutics, 2020, 26, 873-888.                                                                                                                                                             | 0.9 | 52        |
| 7  | Glioma stages prediction based on machine learning algorithm combined with protein-protein interaction networks. Genomics, 2020, 112, 837-847.                                                                                                                                                       | 1.3 | 31        |
| 8  | iProtease-PseAAC(2L): A two-layer predictor for identifying proteases and their types using Chou's 5-step-rule and general PseAAC. Analytical Biochemistry, 2020, 588, 113477.                                                                                                                       | 1.1 | 36        |
| 9  | Some illuminating remarks on molecular genetics and genomics as well as drug development.<br>Molecular Genetics and Genomics, 2020, 295, 261-274.                                                                                                                                                    | 1.0 | 4         |
| 10 | An Insightful 10-year Recollection Since the Emergence of the 5-steps Rule. Current Pharmaceutical Design, 2020, 25, 4223-4234.                                                                                                                                                                      | 0.9 | 10        |
| 11 | iHyd-LysSite (EPSV): Identifying Hydroxylysine Sites in Protein Using Statistical Formulation by<br>Extracting Enhanced Position and Sequence Variant Feature Technique. Current Genomics, 2020, 21,<br>536-545.                                                                                     | 0.7 | 37        |
| 12 | Distorted Key Theory and its Implication for Drug Development. Current Proteomics, 2020, 17, 311-323.                                                                                                                                                                                                | 0.1 | 7         |
| 13 | pLoc_bal-mGpos: Predict subcellular localization of Gram-positive bacterial proteins by quasi-balancing training dataset and PseAAC. Genomics, 2019, 111, 886-892.                                                                                                                                   | 1.3 | 87        |
| 14 | Computational analysis and prediction of lysine malonylation sites by exploiting informative features in an integrative machine-learning framework. Briefings in Bioinformatics, 2019, 20, 2185-2199.                                                                                                | 3.2 | 82        |
| 15 | pLoc_bal-mAnimal: predict subcellular localization of animal proteins by balancing training dataset and PseAAC. Bioinformatics, 2019, 35, 398-406.                                                                                                                                                   | 1.8 | 89        |
| 16 | MULTiPly: a novel multi-layer predictor for discovering general and specific types of promoters.<br>Bioinformatics, 2019, 35, 2957-2965.                                                                                                                                                             | 1.8 | 109       |
| 17 | Positive-unlabelled learning of glycosylation sites in the human proteome. BMC Bioinformatics, 2019, 20, 112.                                                                                                                                                                                        | 1.2 | 60        |
| 18 | The preliminary efficacy evaluation of the CTLA-4-Ig treatment against Lupus nephritis through in-silico analyses. Journal of Theoretical Biology, 2019, 471, 74-81.                                                                                                                                 | 0.8 | 5         |

| #  | Article                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | SPrenylC-PseAAC: A sequence-based model developed via Chou's 5-steps rule and general PseAAC for identifying S-prenylation sites in proteins. Journal of Theoretical Biology, 2019, 468, 1-11.                                             | 0.8 | 115       |
| 20 | pLoc_bal-mHum: Predict subcellular localization of human proteins by PseAAC and quasi-balancing training dataset. Genomics, 2019, 111, 1274-1282.                                                                                          | 1.3 | 63        |
| 21 | Twenty years of bioinformatics research for protease-specific substrate and cleavage site prediction:<br>a comprehensive revisit and benchmarking of existing methods. Briefings in Bioinformatics, 2019, 20,<br>2150-2166.                | 3.2 | 70        |
| 22 | iPSW(2L)-PseKNC: A two-layer predictor for identifying promoters and their strength by hybrid features via pseudo K-tuple nucleotide composition. Genomics, 2019, 111, 1785-1793.                                                          | 1.3 | 60        |
| 23 | SPalmitoylC-PseAAC: A sequence-based model developed via Chou's 5-steps rule and general PseAAC for identifying S-palmitoylation sites in proteins. Analytical Biochemistry, 2019, 568, 14-23.                                             | 1.1 | 105       |
| 24 | pSSbond-PseAAC: Prediction of disulfide bonding sites by integration of PseAAC and statistical moments. Journal of Theoretical Biology, 2019, 463, 47-55.                                                                                  | 0.8 | 68        |
| 25 | Bastion3: a two-layer ensemble predictor of type III secreted effectors. Bioinformatics, 2019, 35, 2017-2028.                                                                                                                              | 1.8 | 69        |
| 26 | iPPI-PseAAC(CGR): Identify protein-protein interactions by incorporating chaos game representation into PseAAC. Journal of Theoretical Biology, 2019, 460, 195-203.                                                                        | 0.8 | 88        |
| 27 | Large-scale comparative assessment of computational predictors for lysine post-translational modification sites. Briefings in Bioinformatics, 2019, 20, 2267-2290.                                                                         | 3.2 | 99        |
| 28 | iDNA6mA-PseKNC: Identifying DNA N6-methyladenosine sites by incorporating nucleotide physicochemical properties into PseKNC. Genomics, 2019, 111, 96-102.                                                                                  | 1.3 | 234       |
| 29 | iProt-Sub: a comprehensive package for accurately mapping and predicting protease-specific substrates and cleavage sites. Briefings in Bioinformatics, 2019, 20, 638-658.                                                                  | 3.2 | 166       |
| 30 | Advances in Predicting Subcellular Localization of Multi-label Proteins and its Implication for Developing Multi-target Drugs. Current Medicinal Chemistry, 2019, 26, 4918-4943.                                                           | 1.2 | 86        |
| 31 | Simulated Protein Thermal Detection (SPTD) for Enzyme Thermostability Study and an Application<br>Example for Pullulanase from Bacillus deramificans. Current Pharmaceutical Design, 2019, 24,<br>4023-4033.                               | 0.9 | 20        |
| 32 | pLoc_bal-mPlant: Predict Subcellular Localization of Plant Proteins by General PseAAC and Balancing<br>Training Dataset. Current Pharmaceutical Design, 2019, 24, 4013-4022.                                                               | 0.9 | 46        |
| 33 | pNitro-Tyr-PseAAC: Predict Nitrotyrosine Sites in Proteins by Incorporating Five Features into Chou's<br>General PseAAC. Current Pharmaceutical Design, 2019, 24, 4034-4043.                                                               | 0.9 | 45        |
| 34 | iHyd-PseAAC (EPSV): Identifying Hydroxylation Sites in Proteins by Extracting Enhanced Position and<br>Sequence Variant Feature via Chou's 5- Step Rule and General Pseudo Amino Acid Composition. Current<br>Genomics, 2019, 20, 124-133. | 0.7 | 46        |
| 35 | iMethylK-PseAAC: Improving Accuracy of Lysine Methylation Sites Identification by Incorporating<br>Statistical Moments and Position Relative Features into General PseAAC via Chou's 5-steps Rule.<br>Current Genomics, 2019, 20, 275-292. | 0.7 | 42        |
| 36 | iSulfoTyr-PseAAC: Identify Tyrosine Sulfation Sites by Incorporating Statistical Moments via Chou's<br>5-steps Rule and Pseudo Components. Current Genomics, 2019, 20, 306-320.                                                            | 0.7 | 45        |

| #  | Article                                                                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Impacts of Pseudo Amino Acid Components and 5-steps Rule to Proteomics and Proteome Analysis.<br>Current Topics in Medicinal Chemistry, 2019, 19, 2283-2300.                                            | 1.0 | 30        |
| 38 | An Epidemic Avian Influenza Prediction Model Based on Google Trends. Letters in Organic Chemistry, 2019, 16, 303-310.                                                                                   | 0.2 | 34        |
| 39 | Prediction of Nitrosocysteine Sites Using Position and Composition Variant Features. Letters in Organic Chemistry, 2019, 16, 283-293.                                                                   | 0.2 | 34        |
| 40 | pLoc_bal-mVirus: Predict Subcellular Localization of Multi-Label Virus Proteins by Chou's General<br>PseAAC and IHTS Treatment to Balance Training Dataset. Medicinal Chemistry, 2019, 15, 496-509.     | 0.7 | 50        |
| 41 | pLoc_bal-mEuk: Predict Subcellular Localization of Eukaryotic Proteins by General PseAAC and Quasi-balancing Training Dataset. Medicinal Chemistry, 2019, 15, 472-485.                                  | 0.7 | 44        |
| 42 | An insightful recollection since the birth of Gordon Life Science Institute about 17 years ago.<br>Advancement in Scientific and Engineering Research, 2019, 4, 31-36.                                  | 5.0 | 8         |
| 43 | <i>iFeature</i> : a Python package and web server for features extraction and selection from protein and peptide sequences. Bioinformatics, 2018, 34, 2499-2502.                                        | 1.8 | 481       |
| 44 | PREvalL, an integrative approach for inferring catalytic residues using sequence, structural, and network features in a machine-learning framework. Journal of Theoretical Biology, 2018, 443, 125-137. | 0.8 | 124       |
| 45 | A Novel Modeling in Mathematical Biology for Classification of Signal Peptides. Scientific Reports, 2018, 8, 1039.                                                                                      | 1.6 | 70        |
| 46 | pLoc-mHum: predict subcellular localization of multi-location human proteins via general PseAAC to winnow out the crucial GO information. Bioinformatics, 2018, 34, 1448-1456.                          | 1.8 | 139       |
| 47 | iPhosT-PseAAC: Identify phosphothreonine sites by incorporating sequence statistical moments into<br>PseAAC. Analytical Biochemistry, 2018, 550, 109-116.                                               | 1.1 | 111       |
| 48 | Bastion6: a bioinformatics approach for accurate prediction of type VI secreted effectors.<br>Bioinformatics, 2018, 34, 2546-2555.                                                                      | 1.8 | 108       |
| 49 | iPromoter-2L: a two-layer predictor for identifying promoters and their types by multi-window-based<br>PseKNC. Bioinformatics, 2018, 34, 33-40.                                                         | 1.8 | 277       |
| 50 | PROSPERous: high-throughput prediction of substrate cleavage sites for 90 proteases with improved accuracy. Bioinformatics, 2018, 34, 684-687.                                                          | 1.8 | 131       |
| 51 | pLoc-mEuk: Predict subcellular localization of multi-label eukaryotic proteins by extracting the key<br>GO information into general PseAAC. Genomics, 2018, 110, 50-58.                                 | 1.3 | 193       |
| 52 | pLoc-mGneg: Predict subcellular localization of Gram-negative bacterial proteins by deep gene ontology learning via general PseAAC. Genomics, 2018, 110, 231-239.                                       | 1.3 | 130       |
| 53 | iKcr-PseEns: Identify lysine crotonylation sites in histone proteins with pseudo components and ensemble classifier. Genomics, 2018, 110, 239-246.                                                      | 1.3 | 127       |
| 54 | PhoglyStruct: Prediction of phosphoglycerylated lysine residues using structural properties of amino acids. Scientific Reports, 2018, 8, 17923.                                                         | 1.6 | 31        |

| #  | Article                                                                                                                                                                                                      | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | iPhosY-PseAAC: identify phosphotyrosine sites by incorporating sequence statistical moments into<br>PseAAC. Molecular Biology Reports, 2018, 45, 2501-2509.                                                  | 1.0 | 57        |
| 56 | iRNA(m6A)-PseDNC: Identifying N6-methyladenosine sites using pseudo dinucleotide composition.<br>Analytical Biochemistry, 2018, 561-562, 59-65.                                                              | 1.1 | 162       |
| 57 | pLoc_bal-mGneg: Predict subcellular localization of Gram-negative bacterial proteins by<br>quasi-balancing training dataset and general PseAAC. Journal of Theoretical Biology, 2018, 458, 92-102.           | 0.8 | 71        |
| 58 | iRO-3wPseKNC: identify DNA replication origins by three-window-based PseKNC. Bioinformatics, 2018, 34, 3086-3093.                                                                                            | 1.8 | 108       |
| 59 | <i>Quokka</i> : a comprehensive tool for rapid and accurate prediction of kinase family-specific phosphorylation sites in the human proteome. Bioinformatics, 2018, 34, 4223-4231.                           | 1.8 | 151       |
| 60 | iRNA-3typeA: Identifying Three Types of Modification at RNA's Adenosine Sites. Molecular Therapy -<br>Nucleic Acids, 2018, 11, 468-474.                                                                      | 2.3 | 173       |
| 61 | iRSpot-Pse6NC: Identifying recombination spots in <i>Saccharomyces cerevisiae</i> by incorporating hexamer composition into general PseKNC. International Journal of Biological Sciences, 2018, 14, 883-891. | 2.6 | 145       |
| 62 | iLoc-IncRNA: predict the subcellular location of IncRNAs by incorporating octamer composition into general PseKNC. Bioinformatics, 2018, 34, 4196-4204.                                                      | 1.8 | 227       |
| 63 | Implications of Newly Identified Brain eQTL Genes and Their Interactors in Schizophrenia. Molecular<br>Therapy - Nucleic Acids, 2018, 12, 433-442.                                                           | 2.3 | 63        |
| 64 | iEnhancer-EL: identifying enhancers and their strength with ensemble learning approach.<br>Bioinformatics, 2018, 34, 3835-3842.                                                                              | 1.8 | 172       |
| 65 | iATC-mISF: a multi-label classifier for predicting the classes of anatomical therapeutic chemicals.<br>Bioinformatics, 2017, 33, 341-346.                                                                    | 1.8 | 139       |
| 66 | iPhosâ€PseEvo: Identifying Human Phosphorylated Proteins by Incorporating Evolutionary Information<br>into General PseAAC via Grey System Theory. Molecular Informatics, 2017, 36, 1600010.                  | 1.4 | 94        |
| 67 | 2L-piRNA: A Two-Layer Ensemble Classifier for Identifying Piwi-Interacting RNAs and Their Function.<br>Molecular Therapy - Nucleic Acids, 2017, 7, 267-277.                                                  | 2.3 | 226       |
| 68 | iRNA-PseColl: Identifying the Occurrence Sites of Different RNA Modifications by Incorporating<br>Collective Effects of Nucleotides into PseKNC. Molecular Therapy - Nucleic Acids, 2017, 7, 155-163.        | 2.3 | 259       |
| 69 | pLoc-mVirus: Predict subcellular localization of multi-location virus proteins via incorporating the optimal GO information into general PseAAC. Gene, 2017, 628, 315-321.                                   | 1.0 | 138       |
| 70 | pLoc-mAnimal: predict subcellular localization of animal proteins with both single and multiple sites.<br>Bioinformatics, 2017, 33, 3524-3531.                                                               | 1.8 | 175       |
| 71 | pLoc-mPlant: predict subcellular localization of multi-location plant proteins by incorporating the optimal GO information into general PseAAC. Molecular BioSystems, 2017, 13, 1722-1727.                   | 2.9 | 178       |
| 72 | iRSpot-EL: identify recombination spots with an ensemble learning approach. Bioinformatics, 2017, 33, 35-41.                                                                                                 | 1.8 | 280       |

| #  | Article                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Prediction of the aquatic toxicity of aromatic compounds to tetrahymena pyriformis through support vector regression. Oncotarget, 2017, 8, 49359-49369.                                                                      | 0.8 | 53        |
| 74 | iATC-mHyb: a hybrid multi-label classifier for predicting the classification of anatomical therapeutic chemicals. Oncotarget, 2017, 8, 58494-58503.                                                                          | 0.8 | 118       |
| 75 | Pse-Analysis: a python package for DNA/RNA and protein/peptide sequence analysis based on pseudo components and kernel methods. Oncotarget, 2017, 8, 13338-13343.                                                            | 0.8 | 119       |
| 76 | iRNA-AI: identifying the adenosine to inosine editing sites in RNA sequences. Oncotarget, 2017, 8, 4208-4217.                                                                                                                | 0.8 | 209       |
| 77 | iRNAm5C-PseDNC: identifying RNA 5-methylcytosine sites by incorporating physical-chemical properties into pseudo dinucleotide composition. Oncotarget, 2017, 8, 41178-41188.                                                 | 0.8 | 191       |
| 78 | Small molecular floribundiquinone B derived from medicinal plants inhibits acetylcholinesterase activity. Oncotarget, 2017, 8, 57149-57162.                                                                                  | 0.8 | 21        |
| 79 | 2L-PCA: a two-level principal component analyzer for quantitative drug design and its applications.<br>Oncotarget, 2017, 8, 70564-70578.                                                                                     | 0.8 | 17        |
| 80 | An Unprecedented Revolution in Medicinal Chemistry Driven by the Progress of Biological Science.<br>Current Topics in Medicinal Chemistry, 2017, 17, 2337-2358.                                                              | 1.0 | 252       |
| 81 | iPreny-PseAAC: Identify C-terminal Cysteine Prenylation Sites in Proteins by Incorporating Two Tiers of Sequence Couplings into PseAAC. Medicinal Chemistry, 2017, 13, 544-551.                                              | 0.7 | 125       |
| 82 | Chlorella vulgaris Induces Apoptosis of Human Non-Small Cell Lung Carcinoma (NSCLC) Cells.<br>Medicinal Chemistry, 2017, 13, 560-568.                                                                                        | 0.7 | 15        |
| 83 | iPGK-PseAAC: Identify Lysine Phosphoglycerylation Sites in Proteins by Incorporating Four Different<br>Tiers of Amino Acid Pairwise Coupling Information into the General PseAAC. Medicinal Chemistry, 2017,<br>13, 552-559. | 0.7 | 128       |
| 84 | iRNA-2methyl: Identify RNA 2'-O-methylation Sites by Incorporating Sequence-Coupled Effects into<br>General PseKNC and Ensemble Classifier. Medicinal Chemistry, 2017, 13, 734-743.                                          | 0.7 | 104       |
| 85 | Pse-in-One 2.0: An Improved Package of Web Servers for Generating Various Modes of Pseudo<br>Components of DNA, RNA, and Protein Sequences. Natural Science, 2017, 09, 67-91.                                                | 0.2 | 115       |
| 86 | pLoc-mGpos: Incorporate Key Gene Ontology Information into General PseAAC for Predicting<br>Subcellular Localization of Gram-Positive Bacterial Proteins. Natural Science, 2017, 09, 330-349.                                | 0.2 | 51        |
| 87 | iOri-Human: identify human origin of replication by incorporating dinucleotide physicochemical properties into pseudo nucleotide composition. Oncotarget, 2016, 7, 69783-69793.                                              | 0.8 | 166       |
| 88 | iROS-gPseKNC: Predicting replication origin sites in DNA by incorporating dinucleotide<br>position-specific propensity into general pseudo nucleotide composition. Oncotarget, 2016, 7,<br>34180-34189.                      | 0.8 | 118       |
| 89 | iACP: a sequence-based tool for identifying anticancer peptides. Oncotarget, 2016, 7, 16895-16909.                                                                                                                           | 0.8 | 354       |
| 90 | iPPBS-Opt: A Sequence-Based Ensemble Classifier for Identifying Protein-Protein Binding Sites by<br>Optimizing Imbalanced Training Datasets. Molecules, 2016, 21, 95.                                                        | 1.7 | 142       |

| #   | Article                                                                                                                                                                                                                                    | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | iHyd-PseCp: Identify hydroxyproline and hydroxylysine in proteins by incorporating sequence-coupled effects into general PseAAC. Oncotarget, 2016, 7, 44310-44321.                                                                         | 0.8 | 150       |
| 92  | iCar-PseCp: identify carbonylation sites in proteins by Monte Carlo sampling and incorporating sequence coupled effects into general PseAAC. Oncotarget, 2016, 7, 34558-34570.                                                             | 0.8 | 176       |
| 93  | pSumo-CD: predicting sumoylation sites in proteins with covariance discriminant algorithm by incorporating sequence-coupled effects into general PseAAC. Bioinformatics, 2016, 32, 3133-3141.                                              | 1.8 | 177       |
| 94  | iDHS-EL: identifying DNase I hypersensitive sites by fusing three different modes of pseudo nucleotide composition into an ensemble learning framework. Bioinformatics, 2016, 32, 2411-2418.                                               | 1.8 | 196       |
| 95  | iPTM-mLys: identifying multiple lysine PTM sites and their different types. Bioinformatics, 2016, 32, 3116-3123.                                                                                                                           | 1.8 | 236       |
| 96  | iMiRNA-PseDPC: microRNA precursor identification with a pseudo distance-pair composition approach.<br>Journal of Biomolecular Structure and Dynamics, 2016, 34, 223-235.                                                                   | 2.0 | 120       |
| 97  | pSuc-Lys: Predict lysine succinylation sites in proteins with PseAAC and ensemble random forest approach. Journal of Theoretical Biology, 2016, 394, 223-230.                                                                              | 0.8 | 297       |
| 98  | pRNAm-PC: Predicting N6-methyladenosine sites in RNA sequences via physical–chemical properties.<br>Analytical Biochemistry, 2016, 497, 60-67.                                                                                             | 1.1 | 247       |
| 99  | Using deformation energy to analyze nucleosome positioning in genomes. Genomics, 2016, 107, 69-75.                                                                                                                                         | 1.3 | 104       |
| 100 | iSuc-PseOpt: Identifying lysine succinylation sites in proteins by incorporating sequence-coupling<br>effects into pseudo components and optimizing imbalanced training dataset. Analytical Biochemistry,<br>2016, 497, 48-56.             | 1.1 | 254       |
| 101 | Identification of protein-protein binding sites by incorporating the physicochemical properties and stationary wavelet transforms into pseudo amino acid composition. Journal of Biomolecular Structure and Dynamics, 2016, 34, 1946-1961. | 2.0 | 120       |
| 102 | iEnhancer-2L: a two-layer predictor for identifying enhancers and their strength by pseudo<br><i>k</i> -tuple nucleotide composition. Bioinformatics, 2016, 32, 362-369.                                                                   | 1.8 | 323       |
| 103 | repRNA: a web server for generating various feature vectors of RNA sequences. Molecular Genetics and Genomics, 2016, 291, 473-481.                                                                                                         | 1.0 | 122       |
| 104 | iRNA-PseU: Identifying RNA pseudouridine sites. Molecular Therapy - Nucleic Acids, 2016, 5, e332.                                                                                                                                          | 2.3 | 172       |
| 105 | iPhos-PseEn: Identifying phosphorylation sites in proteins by fusing different pseudo components into<br>an ensemble classifier. Oncotarget, 2016, 7, 51270-51283.                                                                         | 0.8 | 142       |
| 106 | Recent Novel High-Tech Researches in Molecular Biology. BioMed Research International, 2015, 2015, 1-3.                                                                                                                                    | 0.9 | 2         |
| 107 | iPPI-Esml: An ensemble classifier for identifying the interactions of proteins by incorporating their<br>physicochemical properties and wavelet transforms into PseAAC. Journal of Theoretical Biology, 2015,<br>377, 47-56.               | 0.8 | 265       |
| 108 | Benchmark data for identifying DNA methylation sites via pseudo trinucleotide composition. Data in<br>Brief. 2015. 4. 87-89.                                                                                                               | 0.5 | 8         |

| #   | Article                                                                                                                                                                                                                             | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | iDNA-Methyl: Identifying DNA methylation sites via pseudo trinucleotide composition. Analytical<br>Biochemistry, 2015, 474, 69-77.                                                                                                  | 1.1 | 246       |
| 110 | repDNA: a Python package to generate various modes of feature vectors for DNA sequences by incorporating user-defined physicochemical properties and sequence-order effects. Bioinformatics, 2015, 31, 1307-1309.                   | 1.8 | 242       |
| 111 | PseKNC-General: a cross-platform package for generating various modes of pseudo nucleotide compositions. Bioinformatics, 2015, 31, 119-120.                                                                                         | 1.8 | 210       |
| 112 | Pseudo nucleotide composition or PseKNC: an effective formulation for analyzing genomic sequences.<br>Molecular BioSystems, 2015, 11, 2620-2634.                                                                                    | 2.9 | 289       |
| 113 | Pse-in-One: a web server for generating various modes of pseudo components of DNA, RNA, and protein sequences. Nucleic Acids Research, 2015, 43, W65-W71.                                                                           | 6.5 | 664       |
| 114 | Benchmark data for identifying N 6 -methyladenosine sites in the Saccharomyces cerevisiae genome.<br>Data in Brief, 2015, 5, 376-378.                                                                                               | 0.5 | 9         |
| 115 | iRNA-Methyl: Identifying N6-methyladenosine sites using pseudo nucleotide composition. Analytical<br>Biochemistry, 2015, 490, 26-33.                                                                                                | 1.1 | 350       |
| 116 | Identification of microRNA precursor with the degenerate K-tuple or Kmer strategy. Journal of<br>Theoretical Biology, 2015, 385, 153-159.                                                                                           | 0.8 | 159       |
| 117 | iUbiq-Lys: prediction of lysine ubiquitination sites in proteins by extracting sequence evolution information via a gray system model. Journal of Biomolecular Structure and Dynamics, 2015, 33, 1731-1742.                         | 2.0 | 149       |
| 118 | iDrug-Target: predicting the interactions between drug compounds and target proteins in cellular<br>networking via benchmark dataset optimization approach. Journal of Biomolecular Structure and<br>Dynamics, 2015, 33, 2221-2233. | 2.0 | 185       |
| 119 | Identification of DNA-binding proteins by incorporating evolutionary information into pseudo amino<br>acid composition via the top-n-gram approach. Journal of Biomolecular Structure and Dynamics, 2015,<br>33, 1720-1730.         | 2.0 | 80        |
| 120 | Identification of Real MicroRNA Precursors with a Pseudo Structure Status Composition Approach.<br>PLoS ONE, 2015, 10, e0121501.                                                                                                    | 1.1 | 193       |
| 121 | Recent Progress in Predicting Posttranslational Modification Sites in Proteins. Current Topics in Medicinal Chemistry, 2015, 16, 591-603.                                                                                           | 1.0 | 91        |
| 122 | Impacts of Bioinformatics to Medicinal Chemistry. Medicinal Chemistry, 2015, 11, 218-234.                                                                                                                                           | 0.7 | 496       |
| 123 | Gestational Influenza Increases the Risk of Psychosis in Adults. Medicinal Chemistry, 2015, 11, 676-682.                                                                                                                            | 0.7 | 17        |
| 124 | iNitro-Tyr: Prediction of Nitrotyrosine Sites in Proteins with General Pseudo Amino Acid Composition.<br>PLoS ONE, 2014, 9, e105018.                                                                                                | 1.1 | 178       |
| 125 | iMethyl-PseAAC: Identification of Protein Methylation Sites via a Pseudo Amino Acid Composition<br>Approach. BioMed Research International, 2014, 2014, 1-12.                                                                       | 0.9 | 152       |
| 126 | iSS-PseDNC: Identifying Splicing Sites Using Pseudo Dinucleotide Composition. BioMed Research<br>International, 2014, 2014, 1-12.                                                                                                   | 0.9 | 144       |

8

| #   | Article                                                                                                                                                                                                                                  | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | iPro54-PseKNC: a sequence-based predictor for identifying sigma-54 promoters in prokaryote with pseudo k-tuple nucleotide composition. Nucleic Acids Research, 2014, 42, 12961-12972.                                                    | 6.5 | 467       |
| 128 | iRSpot-TNCPseAAC: Identify Recombination Spots with Trinucleotide Composition and Pseudo Amino Acid Components. International Journal of Molecular Sciences, 2014, 15, 1746-1766.                                                        | 1.8 | 227       |
| 129 | iHyd-PseAAC: Predicting Hydroxyproline and Hydroxylysine in Proteins by Incorporating Dipeptide<br>Position-Specific Propensity into Pseudo Amino Acid Composition. International Journal of Molecular<br>Sciences, 2014, 15, 7594-7610. | 1.8 | 190       |
| 130 | iCTX-Type: A Sequence-Based Predictor for Identifying the Types of Conotoxins in Targeting Ion<br>Channels. BioMed Research International, 2014, 2014, 1-10.                                                                             | 0.9 | 185       |
| 131 | Combining evolutionary information extracted from frequency profiles with sequence-based kernels for protein remote homology detection. Bioinformatics, 2014, 30, 472-479.                                                               | 1.8 | 266       |
| 132 | iTIS-PseTNC: A sequence-based predictor for identifying translation initiation site in human genes using pseudo trinucleotide composition. Analytical Biochemistry, 2014, 462, 76-83.                                                    | 1.1 | 245       |
| 133 | iNuc-PseKNC: a sequence-based predictor for predicting nucleosome positioning in genomes with pseudo k-tuple nucleotide composition. Bioinformatics, 2014, 30, 1522-1529.                                                                | 1.8 | 349       |
| 134 | iNR-Drug: Predicting the Interaction of Drugs with Nuclear Receptors in Cellular Networking.<br>International Journal of Molecular Sciences, 2014, 15, 4915-4937.                                                                        | 1.8 | 71        |
| 135 | PseKNC: A flexible web server for generating pseudo K-tuple nucleotide composition. Analytical<br>Biochemistry, 2014, 456, 53-60.                                                                                                        | 1.1 | 409       |
| 136 | iDNA-Prot dis: Identifying DNA-Binding Proteins by Incorporating Amino Acid Distance-Pairs and<br>Reduced Alphabet Profile into the General Pseudo Amino Acid Composition. PLoS ONE, 2014, 9, e106691.                                   | 1.1 | 242       |
| 137 | Research/Review: Structure and Linkage Disequilibrium Analysis of Adamantane Resistant Mutations in<br>Influenza Virus M2 Proton Channel. Current Drug Metabolism, 2014, 15, 526-534.                                                    | 0.7 | 1         |
| 138 | Research/Review: Insights into the Mutation-Induced Dysfunction of Arachidonic Acid Metabolism from Modeling of Human CYP2J2. Current Drug Metabolism, 2014, 15, 502-513.                                                                | 0.7 | 13        |
| 139 | iLoc-Animal: a multi-label learning classifier for predicting subcellular localization of animal proteins. Molecular BioSystems, 2013, 9, 634.                                                                                           | 2.9 | 245       |
| 140 | iAMP-2L: A two-level multi-label classifier for identifying antimicrobial peptides and their functional types. Analytical Biochemistry, 2013, 436, 168-177.                                                                              | 1.1 | 442       |
| 141 | iHSP-PseRAAAC: Identifying the heat shock protein families using pseudo reduced amino acid alphabet composition. Analytical Biochemistry, 2013, 442, 118-125.                                                                            | 1.1 | 287       |
| 142 | iCDI-PseFpt: Identify the channel–drug interaction in cellular networking with PseAAC and molecular<br>fingerprints. Journal of Theoretical Biology, 2013, 337, 71-79.                                                                   | 0.8 | 113       |
| 143 | Some remarks on predicting multi-label attributes in molecular biosystems. Molecular BioSystems, 2013, 9, 1092.                                                                                                                          | 2.9 | 393       |
| 144 | iRSpot-PseDNC: identify recombination spots with pseudo dinucleotide composition. Nucleic Acids<br>Research, 2013, 41, e68-e68.                                                                                                          | 6.5 | 562       |

| #   | Article                                                                                                                                                                                            | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | iEzy-Drug: A Web Server for Identifying the Interaction between Enzymes and Drugs in Cellular<br>Networking. BioMed Research International, 2013, 2013, 1-13.                                      | 0.9 | 73        |
| 146 | Metallo-β-Lactamases: Structural Features, Antibiotic Recognition, Inhibition, and Inhibitor<br>Design. Current Topics in Medicinal Chemistry, 2013, 13, 1242-1253.                                | 1.0 | 31        |
| 147 | Recent Advances in Predicting Protein Classification and Their Applications to Drug Development.<br>Current Topics in Medicinal Chemistry, 2013, 13, 1622-1635.                                    | 1.0 | 22        |
| 148 | iSNO-PseAAC: Predict Cysteine S-Nitrosylation Sites in Proteins by Incorporating Position Specific<br>Amino Acid Propensity into Pseudo Amino Acid Composition. PLoS ONE, 2013, 8, e55844.         | 1.1 | 333       |
| 149 | iGPCR-Drug: A Web Server for Predicting Interaction between GPCRs and Drugs in Cellular<br>Networking. PLoS ONE, 2013, 8, e72234.                                                                  | 1.1 | 106       |
| 150 | Recent Progresses in Identifying Nuclear Receptors and Their Families. Current Topics in Medicinal Chemistry, 2013, 13, 1192-1200.                                                                 | 1.0 | 28        |
| 151 | Predict Drug-Protein Interaction in Cellular Networking. Current Topics in Medicinal Chemistry, 2013, 13, 1707-1712.                                                                               | 1.0 | 29        |
| 152 | iSNO-AAPair: incorporating amino acid pairwise coupling into PseAAC for predicting cysteine <i>S</i> -nitrosylation sites in proteins. PeerJ, 2013, 1, e171.                                       | 0.9 | 259       |
| 153 | Recent Advances in Computational Studies on Influenza A Virus M2 Proton Channel. Mini-Reviews in<br>Medicinal Chemistry, 2012, 12, 971-978.                                                        | 1.1 | 16        |
| 154 | Predicting Anatomical Therapeutic Chemical (ATC) Classification of Drugs by Integrating Chemical-Chemical Interactions and Similarities. PLoS ONE, 2012, 7, e35254.                                | 1.1 | 159       |
| 155 | Deciphering the effects of gene deletion on yeast longevity using network and machine learning approaches. Biochimie, 2012, 94, 1017-1025.                                                         | 1.3 | 67        |
| 156 | iLoc-Hum: using the accumulation-label scale to predict subcellular locations of human proteins with both single and multiple sites. Molecular BioSystems, 2012, 8, 629-641.                       | 2.9 | 335       |
| 157 | Hepatitis C Virus Network Based Classification of Hepatocellular Cirrhosis and Carcinoma. PLoS ONE, 2012, 7, e34460.                                                                               | 1.1 | 52        |
| 158 | Design Novel Dual Agonists for Treating Type-2 Diabetes by Targeting Peroxisome<br>Proliferator-Activated Receptors with Core Hopping Approach. PLoS ONE, 2012, 7, e38546.                         | 1.1 | 91        |
| 159 | iNuc-PhysChem: A Sequence-Based Predictor for Identifying Nucleosomes via Physicochemical<br>Properties. PLoS ONE, 2012, 7, e47843.                                                                | 1.1 | 181       |
| 160 | iLoc-Gpos: A Multi-Layer Classifier for Predicting the Subcellular Localization of Singleplex and<br>Multiplex Gram-Positive Bacterial Proteins. Protein and Peptide Letters, 2012, 19, 4-14.      | 0.4 | 138       |
| 161 | iNR-PhysChem: A Sequence-Based Predictor for Identifying Nuclear Receptors and Their Subfamilies via<br>Physical-Chemical Property Matrix. PLoS ONE, 2012, 7, e30869.                              | 1.1 | 81        |
| 162 | Predicting Secretory Proteins of Malaria Parasite by Incorporating Sequence Evolution Information intormation into Pseudo Amino Acid Composition via Grey System Model. PLoS ONE, 2012, 7, e49040. | 1.1 | 47        |

| #   | Article                                                                                                                                                                                             | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Molecular Dynamics Simulations of CYP2E1. Medicinal Chemistry, 2012, 8, 208-221.                                                                                                                    | 0.7 | 27        |
| 164 | A pharmacophore model specific to active site of CYP1A2 with a novel molecular modeling explorer and CoMFA. Medicinal Chemistry, 2012, 8, 198-207.                                                  | 0.7 | 5         |
| 165 | GPCR-2L: predicting G protein-coupled receptors and their types by hybridizing two different modes of pseudo amino acid compositions. Molecular BioSystems, 2011, 7, 911-919.                       | 2.9 | 136       |
| 166 | iLoc-Plant: a multi-label classifier for predicting the subcellular localization of plant proteins with both single and multiple sites. Molecular BioSystems, 2011, 7, 3287.                        | 2.9 | 198       |
| 167 | Novel Inhibitor Design for Hemagglutinin against H1N1 Influenza Virus by Core Hopping Method. PLoS<br>ONE, 2011, 6, e28111.                                                                         | 1.1 | 99        |
| 168 | Predicting Functions of Proteins in Mouse Based on Weighted Protein-Protein Interaction Network<br>and Protein Hybrid Properties. PLoS ONE, 2011, 6, e14556.                                        | 1.1 | 144       |
| 169 | iDNA-Prot: Identification of DNA Binding Proteins Using Random Forest with Grey Model. PLoS ONE, 2011, 6, e24756.                                                                                   | 1.1 | 255       |
| 170 | AFP-Pred: A random forest approach for predicting antifreeze proteins from sequence-derived properties. Journal of Theoretical Biology, 2011, 270, 56-62.                                           | 0.8 | 226       |
| 171 | Some remarks on protein attribute prediction and pseudo amino acid composition. Journal of Theoretical Biology, 2011, 273, 236-247.                                                                 | 0.8 | 1,236     |
| 172 | iLoc-Virus: A multi-label learning classifier for identifying the subcellular localization of virus proteins with both single and multiple sites. Journal of Theoretical Biology, 2011, 284, 42-51. | 0.8 | 252       |
| 173 | Docking and Molecular Dynamics Study on the Inhibitory Activity of Novel Inhibitors on Epidermal<br>Growth Factor Receptor (EGFR). Medicinal Chemistry, 2011, 7, 24-31.                             | 0.7 | 71        |
| 174 | Insights from Modeling the 3D Structure of New Delhi Metallo-Î <sup>2</sup> -Lactamse and Its Binding Interactions with Antibiotic Drugs. PLoS ONE, 2011, 6, e18414.                                | 1.1 | 54        |
| 175 | iLoc-Euk: A Multi-Label Classifier for Predicting the Subcellular Localization of Singleplex and<br>Multiplex Eukaryotic Proteins. PLoS ONE, 2011, 6, e18258.                                       | 1.1 | 298       |
| 176 | An Allosteric Mechanism Inferred from Molecular Dynamics Simulations on Phospholamban Pentamer<br>in Lipid Membranes. PLoS ONE, 2011, 6, e18587.                                                    | 1.1 | 50        |
| 177 | Using Pseudo Amino Acid Composition to Predict Protein Attributes Via Cellular Automata and Other<br>Approaches. Current Bioinformatics, 2011, 6, 251-260.                                          | 0.7 | 22        |
| 178 | Wenxiang: a web-server for drawing wenxiang diagrams. Natural Science, 2011, 03, 862-865.                                                                                                           | 0.2 | 60        |
| 179 | Graphic Rule for Drug Metabolism Systems. Current Drug Metabolism, 2010, 11, 369-378.                                                                                                               | 0.7 | 189       |
| 180 | A New Method for Predicting the Subcellular Localization of Eukaryotic Proteins with Both Single and Multiple Sites: Euk-mPLoc 2.0. PLoS ONE, 2010, 5, e9931.                                       | 1.1 | 300       |

| #   | Article                                                                                                                                                                                                | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Analysis and Prediction of the Metabolic Stability of Proteins Based on Their Sequential Features,<br>Subcellular Locations and Interaction Networks. PLoS ONE, 2010, 5, e10972.                       | 1.1 | 123       |
| 182 | Plant-mPLoc: A Top-Down Strategy to Augment the Power for Predicting Plant Protein Subcellular<br>Localization. PLoS ONE, 2010, 5, e11335.                                                             | 1.1 | 732       |
| 183 | Pseudo Amino Acid Composition and its Applications in Bioinformatics, Proteomics and System Biology. Current Proteomics, 2009, 6, 262-274.                                                             | 0.1 | 432       |
| 184 | GPCRâ€CA: A cellular automaton image approach for predicting Gâ€protein–coupled receptor functional classes. Journal of Computational Chemistry, 2009, 30, 1414-1423.                                  | 1.5 | 196       |
| 185 | Predicting the quaternary structure attribute of a protein by hybridizing functional domain composition and pseudo amino acid composition. Journal of Applied Crystallography, 2009, 42, 169-173.      | 1.9 | 65        |
| 186 | Predicting protein fold pattern with functional domain and sequential evolution information.<br>Journal of Theoretical Biology, 2009, 256, 441-446.                                                    | 0.8 | 111       |
| 187 | Identification of proteases and their types. Analytical Biochemistry, 2009, 385, 153-160.                                                                                                              | 1.1 | 66        |
| 188 | A top-down approach to enhance the power of predicting human protein subcellular localization:<br>Hum-mPLoc 2.0. Analytical Biochemistry, 2009, 394, 269-274.                                          | 1.1 | 158       |
| 189 | QuatIdent: A Web Server for Identifying Protein Quaternary Structural Attribute by Fusing Functional<br>Domain and Sequential Evolution Information. Journal of Proteome Research, 2009, 8, 1577-1584. | 1.8 | 97        |
| 190 | Insights from investigating the interaction of oseltamivir (Tamiflu) with neuraminidase of the 2009<br>H1N1 swine flu virus. Biochemical and Biophysical Research Communications, 2009, 386, 432-436.  | 1.0 | 117       |
| 191 | Insight into the molecular switch mechanism of human Rab5a from molecular dynamics simulations.<br>Biochemical and Biophysical Research Communications, 2009, 390, 608-612.                            | 1.0 | 87        |
| 192 | REVIEW : Recent advances in developing web-servers for predicting protein attributes. Natural Science, 2009, 01, 63-92.                                                                                | 0.2 | 222       |
| 193 | Prediction of protein folding rates from primary sequence by fusing multiple sequential features.<br>Journal of Biomedical Science and Engineering, 2009, 02, 136-143.                                 | 0.2 | 97        |
| 194 | Prediction protein structural classes with pseudo-amino acid composition: Approximate entropy and hydrophobicity pattern. Journal of Theoretical Biology, 2008, 250, 186-193.                          | 0.8 | 168       |
| 195 | Predicting protein structural classes with pseudo amino acid composition: An approach using<br>geometric moments of cellular automaton image. Journal of Theoretical Biology, 2008, 254, 691-696.      | 0.8 | 126       |
| 196 | Multiple field three dimensional quantitative structure–activity relationship (MF-3D-QSAR). Journal of Computational Chemistry, 2008, 29, 211-219.                                                     | 1.5 | 90        |
| 197 | Using grey dynamic modeling and pseudo amino acid composition to predict protein structural classes. Journal of Computational Chemistry, 2008, 29, 2018-2024.                                          | 1.5 | 76        |
| 198 | PseAAC: A flexible web server for generating various kinds of protein pseudo amino acid composition.<br>Analytical Biochemistry, 2008, 373, 386-388.                                                   | 1.1 | 397       |

| #   | Article                                                                                                                                                                                                      | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 199 | HIVcleave: a web-server for predicting human immunodeficiency virus protease cleavage sites in proteins. Analytical Biochemistry, 2008, 375, 388-390.                                                        | 1.1 | 155       |
| 200 | Cell-PLoc: a package of Web servers for predicting subcellular localization of proteins in various organisms. Nature Protocols, 2008, 3, 153-162.                                                            | 5.5 | 969       |
| 201 | ProtIdent: A web server for identifying proteases and their types by fusing functional domain and sequential evolution information. Biochemical and Biophysical Research Communications, 2008, 376, 321-325. | 1.0 | 167       |
| 202 | Knowledge-based computational intelligence development for predicting protein secondary structures from sequences. Expert Review of Proteomics, 2008, 5, 653-662.                                            | 1.3 | 4         |
| 203 | Gpos-PLoc: an ensemble classifier for predicting subcellular localization of Gram-positive bacterial proteins. Protein Engineering, Design and Selection, 2007, 20, 39-46.                                   | 1.0 | 146       |
| 204 | Prediction of Protein Structure Classes with Pseudo Amino Acid Composition and Fuzzy Support<br>Vector Machine Network. Protein and Peptide Letters, 2007, 14, 811-815.                                      | 0.4 | 191       |
| 205 | Methodology development for predicting subcellular localization and other attributes of proteins.<br>Expert Review of Proteomics, 2007, 4, 453-463.                                                          | 1.3 | 36        |
| 206 | Nuc-PLoc: a new web-server for predicting protein subnuclear localization by fusing PseAA composition and PsePSSM. Protein Engineering, Design and Selection, 2007, 20, 561-567.                             | 1.0 | 179       |
| 207 | MemType-2L: A Web server for predicting membrane proteins and their types by incorporating evolution information through Pse-PSSM. Biochemical and Biophysical Research Communications, 2007, 360, 339-345.  | 1.0 | 446       |
| 208 | Signal-3L: A 3-layer approach for predicting signal peptides. Biochemical and Biophysical Research Communications, 2007, 363, 297-303.                                                                       | 1.0 | 255       |
| 209 | Euk-mPLoc:Â A Fusion Classifier for Large-Scale Eukaryotic Protein Subcellular Location Prediction by<br>Incorporating Multiple Sites. Journal of Proteome Research, 2007, 6, 1728-1734.                     | 1.8 | 341       |
| 210 | Virus-PLoc: A fusion classifier for predicting the subcellular localization of viral proteins within host and virus-infected cells. Biopolymers, 2007, 85, 233-240.                                          | 1.2 | 154       |
| 211 | Recent progress in protein subcellular location prediction. Analytical Biochemistry, 2007, 370, 1-16.                                                                                                        | 1.1 | 864       |
| 212 | Large-Scale Predictions of Gram-Negative Bacterial Protein Subcellular Locations. Journal of Proteome Research, 2006, 5, 3420-3428.                                                                          | 1.8 | 153       |
| 213 | Predicting Eukaryotic Protein Subcellular Location by Fusing Optimized Evidence-Theoretic K-Nearest<br>Neighbor Classifiers. Journal of Proteome Research, 2006, 5, 1888-1897.                               | 1.8 | 269       |
| 214 | Prediction of protease types in a hybridization space. Biochemical and Biophysical Research<br>Communications, 2006, 339, 1015-1020.                                                                         | 1.0 | 73        |
| 215 | Hum-PLoc: A novel ensemble classifier for predicting human protein subcellular localization.<br>Biochemical and Biophysical Research Communications, 2006, 347, 150-157.                                     | 1.0 | 256       |
| 216 | Using LogitBoost classifier to predict protein structural classes. Journal of Theoretical Biology, 2006, 238, 172-176.                                                                                       | 0.8 | 182       |

| #   | Article                                                                                                                                                                                        | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 217 | Predicting membrane protein type by functional domain composition and pseudo-amino acid composition. Journal of Theoretical Biology, 2006, 238, 395-400.                                       | 0.8 | 111       |
| 218 | Fuzzy KNN for predicting membrane protein types from pseudo-amino acid composition. Journal of<br>Theoretical Biology, 2006, 240, 9-13.                                                        | 0.8 | 172       |
| 219 | Using stacked generalization to predict membrane protein types based on pseudo-amino acid composition. Journal of Theoretical Biology, 2006, 242, 941-946.                                     | 0.8 | 169       |
| 220 | Using pseudo amino acid composition to predict protein structural classes: Approached with complexity measure factor. Journal of Computational Chemistry, 2006, 27, 478-482.                   | 1.5 | 188       |
| 221 | Ensemble classifier for protein fold pattern recognition. Bioinformatics, 2006, 22, 1717-1722.                                                                                                 | 1.8 | 350       |
| 222 | Molecular Modeling Studies of Peptide Drug Candidates against SARS. Medicinal Chemistry, 2006, 2,<br>309-314.                                                                                  | 0.7 | 58        |
| 223 | SLLE for predicting membrane protein types. Journal of Theoretical Biology, 2005, 232, 7-15.                                                                                                   | 0.8 | 144       |
| 224 | Predicting enzyme family classes by hybridizing gene product composition and pseudo-amino acid composition. Journal of Theoretical Biology, 2005, 234, 145-149.                                | 0.8 | 90        |
| 225 | Molecular modeling and chemical modification for finding peptide inhibitor against severe acute respiratory syndrome coronavirus main proteinase. Analytical Biochemistry, 2005, 337, 262-270. | 1.1 | 101       |
| 226 | Using Fourier Spectrum Analysis and Pseudo Amino Acid Composition for Prediction of Membrane<br>Protein Types. Protein Journal, 2005, 24, 385-389.                                             | 0.7 | 72        |
| 227 | Progress in Protein Structural Class Prediction and its Impact to Bioinformatics and Proteomics.<br>Current Protein and Peptide Science, 2005, 6, 423-436.                                     | 0.7 | 138       |
| 228 | Predicting Enzyme Subclass by Functional Domain Composition and Pseudo Amino Acid Composition.<br>Journal of Proteome Research, 2005, 4, 967-971.                                              | 1.8 | 96        |
| 229 | Coupling Interaction between Thromboxane A2 Receptor and Alpha-13 Subunit of Guanine<br>Nucleotide-Binding Protein. Journal of Proteome Research, 2005, 4, 1681-1686.                          | 1.8 | 136       |
| 230 | Insights from Modeling the 3D Structure of DNAâ^'CBF3b Complex. Journal of Proteome Research, 2005,<br>4, 1657-1660.                                                                           | 1.8 | 60        |
| 231 | Prediction of G-Protein-Coupled Receptor Classes. Journal of Proteome Research, 2005, 4, 1413-1418.                                                                                            | 1.8 | 142       |
| 232 | Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes. Bioinformatics, 2005, 21, 10-19.                                                                          | 1.8 | 900       |
| 233 | Modeling the tertiary structure of human cathepsin-E. Biochemical and Biophysical Research<br>Communications, 2005, 331, 56-60.                                                                | 1.0 | 80        |
| 234 | Boosting classifier for predicting protein domain structural class. Biochemical and Biophysical<br>Research Communications, 2005, 334, 213-217.                                                | 1.0 | 129       |

| #   | Article                                                                                                                                                                                                              | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 235 | Using optimized evidence-theoretic K-nearest neighbor classifier and pseudo-amino acid composition<br>to predict membrane protein types. Biochemical and Biophysical Research Communications, 2005, 334,<br>288-292. | 1.0 | 178       |
| 236 | Using supervised fuzzy clustering to predict protein structural classes. Biochemical and Biophysical Research Communications, 2005, 334, 577-581.                                                                    | 1.0 | 146       |
| 237 | Low-frequency Fourier spectrum for predicting membrane protein types. Biochemical and Biophysical Research Communications, 2005, 336, 737-739.                                                                       | 1.0 | 155       |
| 238 | Predicting protein subnuclear location with optimized evidence-theoretic K-nearest classifier and pseudo amino acid composition. Biochemical and Biophysical Research Communications, 2005, 337, 752-756.            | 1.0 | 147       |
| 239 | Structural Bioinformatics and its Impact to Biomedical Science. Current Medicinal Chemistry, 2004, 11, 2105-2134.                                                                                                    | 1.2 | 674       |
| 240 | Weighted-support vector machines for predicting membrane protein types based on pseudo-amino acid composition. Protein Engineering, Design and Selection, 2004, 17, 509-516.                                         | 1.0 | 180       |
| 241 | Predicting subcellular localization of proteins in a hybridization space. Bioinformatics, 2004, 20, 1151-1156.                                                                                                       | 1.8 | 88        |
| 242 | Predicting subcellular localization of proteins by hybridizing functional domain composition and pseudo-amino acid composition. Journal of Cellular Biochemistry, 2004, 91, 1197-1203.                               | 1.2 | 88        |
| 243 | Insights from Modeling the Tertiary Structure of Human BACE2. Journal of Proteome Research, 2004, 3, 1069-1072.                                                                                                      | 1.8 | 87        |
| 244 | Insights from Modeling Three-Dimensional Structures of the Human Potassium and Sodium Channels.<br>Journal of Proteome Research, 2004, 3, 856-861.                                                                   | 1.8 | 92        |
| 245 | Modelling extracellular domains of GABA-A receptors: subtypes 1, 2, 3, and 5. Biochemical and Biophysical Research Communications, 2004, 316, 636-642.                                                               | 1.0 | 144       |
| 246 | Insights from modelling the 3D structure of the extracellular domain of $\hat{I}\pm7$ nicotinic acetylcholine receptor. Biochemical and Biophysical Research Communications, 2004, 319, 433-438.                     | 1.0 | 146       |
| 247 | Polyprotein cleavage mechanism of SARS CoV Mpro and chemical modification of the octapeptide.<br>Peptides, 2004, 25, 1857-1864.                                                                                      | 1.2 | 95        |
| 248 | Molecular Therapeutic Target for Type-2 Diabetes. Journal of Proteome Research, 2004, 3, 1284-1288.                                                                                                                  | 1.8 | 151       |
| 249 | Prediction and classification of protein subcellular location-sequence-order effect and pseudo amino acid composition. Journal of Cellular Biochemistry, 2003, 90, 1250-1260.                                        | 1.2 | 157       |
| 250 | Predicting protein quaternary structure by pseudo amino acid composition. Proteins: Structure,<br>Function and Bioinformatics, 2003, 53, 282-289.                                                                    | 1.5 | 138       |
| 251 | Prediction of Enzyme Family Classes. Journal of Proteome Research, 2003, 2, 183-190.                                                                                                                                 | 1.8 | 113       |
| 252 | Support Vector Machines for Predicting Membrane Protein Types by Using Functional Domain<br>Composition. Biophysical Journal, 2003, 84, 3257-3263.                                                                   | 0.2 | 307       |

| #   | Article                                                                                                                                                                                                                        | lF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 253 | Nearest neighbour algorithm for predicting protein subcellular location by combining functional domain composition and pseudo-amino acid composition. Biochemical and Biophysical Research Communications, 2003, 305, 407-411. | 1.0 | 107       |
| 254 | Bioinformatical Analysis of G-Protein-Coupled Receptors. Journal of Proteome Research, 2002, 1, 429-433.                                                                                                                       | 1.8 | 175       |
| 255 | Using Functional Domain Composition and Support Vector Machines for Prediction of Protein<br>Subcellular Location. Journal of Biological Chemistry, 2002, 277, 45765-45769.                                                    | 1.6 | 449       |
| 256 | Prediction of the Tertiary Structure of the Î <sup>2</sup> -Secretase Zymogen. Biochemical and Biophysical Research Communications, 2002, 292, 702-708.                                                                        | 1.0 | 95        |
| 257 | Prediction of protein structural classes by support vector machines. Computers & Chemistry, 2002, 26, 293-296.                                                                                                                 | 1.2 | 218       |
| 258 | Prediction of signal peptides using scaled window. Peptides, 2001, 22, 1973-1979.                                                                                                                                              | 1.2 | 201       |
| 259 | Prediction of protein cellular attributes using pseudo-amino acid composition. Proteins: Structure,<br>Function and Bioinformatics, 2001, 43, 246-255.                                                                         | 1.5 | 1,729     |
| 260 | Prediction of protein signal sequences and their cleavage sites. Proteins: Structure, Function and Bioinformatics, 2001, 42, 136-139.                                                                                          | 1.5 | 105       |
| 261 | Using subsite coupling to predict signal peptides. Protein Engineering, Design and Selection, 2001, 14, 75-79.                                                                                                                 | 1.0 | 249       |
| 262 | Prediction of the tertiary structure of a caspase-9/inhibitor complex. FEBS Letters, 2000, 470, 249-256.                                                                                                                       | 1.3 | 130       |
| 263 | Protein subcellular location prediction. Protein Engineering, Design and Selection, 1999, 12, 107-118.                                                                                                                         | 1.0 | 334       |
| 264 | Using pair-coupled amino acid composition to predict protein secondary structure content. The<br>Protein Journal, 1999, 18, 473-480.                                                                                           | 1.1 | 80        |
| 265 | A Key Driving Force in Determination of Protein Structural Classes. Biochemical and Biophysical Research Communications, 1999, 264, 216-224.                                                                                   | 1.0 | 196       |
| 266 | Prediction of protein structural classes by modified mahalanobis discriminant algorithm. The Protein<br>Journal, 1998, 17, 209-217.                                                                                            | 1.1 | 61        |
| 267 | Prediction of the tertiary structure and substrate binding site of caspase-8. FEBS Letters, 1997, 419, 49-54.                                                                                                                  | 1.3 | 114       |
| 268 | The benzylthio-pyrimidine U-31,355, a potent inhibitor of HIV-1 reverse transcriptase. Biochemical<br>Pharmacology, 1996, 51, 743-750.                                                                                         | 2.0 | 86        |
| 269 | Knowledge-based model building of the tertiary structures for lectin domains of the selectin family.<br>The Protein Journal, 1996, 15, 161-168.                                                                                | 1.1 | 26        |
| 270 | Predicting human immunodeficiency virus protease cleavage sites in proteins by a discriminant function method. , 1996, 24, 51-72.                                                                                              |     | 73        |

| #   | Article                                                                                                                                                             | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 271 | Prediction of Human Immunodeficiency Virus Protease Cleavage Sites in Proteins. Analytical<br>Biochemistry, 1996, 233, 1-14.                                        | 1.1 | 314       |
| 272 | Neural Network Prediction of the HIV-1 Protease Cleavage Sites. Journal of Theoretical Biology, 1995, 177, 369-379.                                                 | 0.8 | 88        |
| 273 | Monte Carlo simulation studies on the prediction of protein folding types from amino acid composition. The Protein Journal, 1995, 14, 251-258.                      | 1.1 | 6         |
| 274 | An eigenvalue-eigenvector approach to predicting protein folding types. The Protein Journal, 1995, 14, 309-326.                                                     | 1.1 | 9         |
| 275 | An analysis of protein folding type prediction by seed-propagated sampling and jackknife test. The<br>Protein Journal, 1995, 14, 583-593.                           | 1.1 | 28        |
| 276 | Predicting protein structural classes from amino acid composition: application of fuzzy clustering.<br>Protein Engineering, Design and Selection, 1995, 8, 425-435. | 1.0 | 67        |
| 277 | Does the folding type of a protein depend on its amino acid composition?. FEBS Letters, 1995, 363, 127-131.                                                         | 1.3 | 30        |
| 278 | Prediction of Protein Structural Classes. Critical Reviews in Biochemistry and Molecular Biology, 1995, 30, 275-349.                                                | 2.3 | 1,017     |
| 279 | An alternate-subsite-coupled model for predicting HIV protease cleavage sites in proteins. Protein Engineering, Design and Selection, 1994, 7, 65-73.               | 1.0 | 29        |
| 280 | Solitary wave dynamics as a mechanism for explaining the internal motion during microtubule growth. Biopolymers, 1994, 34, 143-153.                                 | 1.2 | 130       |
| 281 | A vector projection approach to predicting HIV protease cleavage sites in proteins. Proteins:<br>Structure, Function and Bioinformatics, 1993, 16, 195-204.         | 1.5 | 31        |
| 282 | Studies on the specificity of HIV protease: An application of Markov chain theory. The Protein Journal, 1993, 12, 709-724.                                          | 1.1 | 36        |
| 283 | A new approach to predicting protein folding types. The Protein Journal, 1993, 12, 169-178.                                                                         | 1.1 | 30        |
| 284 | An optimization approach to predicting protein structural class from amino acid composition.<br>Protein Science, 1992, 1, 401-408.                                  | 3.1 | 151       |
| 285 | An energyâ€based approach to packing the 7â€helix bundle of bacteriorhodopsin. Protein Science, 1992, 1,<br>810-827.                                                | 3.1 | 47        |
| 286 | A correlation-coefficient method to predicting protein-structural classes from amino acid compositions. FEBS Journal, 1992, 207, 429-433.                           | 0.2 | 57        |
| 287 | Applications of graph theory to enzyme kinetics and protein folding kinetics. Biophysical Chemistry, 1990, 35, 1-24.                                                | 1.5 | 234       |
| 288 | Low-frequency resonance and cooperativity of hemoglobin. Trends in Biochemical Sciences, 1989, 14, 212.                                                             | 3.7 | 148       |

| #   | Article                                                                                                                                                                          | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 289 | Low-frequency collective motion in biomacromolecules and its biological functions. Biophysical Chemistry, 1988, 30, 3-48.                                                        | 1.5 | 334       |
| 290 | The biological functions of low-frequency vibrations (phonons). VI. A possible dynamic mechanism of allosteric transition in antibody molecules. Biopolymers, 1987, 26, 285-295. | 1.2 | 97        |
| 291 | Origin of low-frequency motions in biological macromolecules. Biophysical Chemistry, 1986, 25, 105-116.                                                                          | 1.5 | 37        |
| 292 | The biological functions of low-frequency vibrations (phonons). Biophysical Chemistry, 1985, 22, 219-235.                                                                        | 1.5 | 43        |
| 293 | Prediction of a low-frequency mode in bovine pancreatic trypsin inhibitor molecule. International<br>Journal of Biological Macromolecules, 1985, 7, 77-80.                       | 3.6 | 23        |
| 294 | The biological functions of low-frequency vibrations (phonons). Biophysical Chemistry, 1984, 20, 61-71.                                                                          | 1.5 | 70        |
| 295 | Diffusion-controlled effects in reversible enzymatic fast reaction systems - critical spherical shell and proximity rate constant. Biophysical Chemistry, 1980, 12, 255-263.     | 1.5 | 56        |
| 296 | The critical spherical shell in enzymatic fast reaction systems. Biophysical Chemistry, 1980, 12, 265-269.                                                                       | 1.5 | 48        |